Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: \(|x-2017|^{2017}\ge0;\left(2y+2018\right)^{2018}=\left(\left(2y+2018\right)^{1009}\right)^2\ge0\)
Tổng của 2 số dương bằng 0 khi và chỉ khi cả 2 số đều bằng 0
=> \(\hept{\begin{cases}|x-2017|^{2017}=0\\\left(2y+2018\right)^{2018}=0\end{cases}}\) <=> \(\hept{\begin{cases}x-2017=0\\2y+2018=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=2017\\y=-1009\end{cases}}\)
Đáp số: (x,y)=(2017; -1009)
Đánh giá: \(\left|x-2017\right|^{2017}\ge0\)
\(\left(2y+2018\right)^{2018}\ge0\)
\(\Rightarrow\)\(\left|x-2017\right|^{2017}+\left(2y+2018\right)^{2018}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-2017=0\\2y+2018=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=2017\\y=-1009\end{cases}}\)
Vậy,...
Theo bài ra ta có:
\(\hept{\begin{cases}c=2016\\a+b+c=2017\\a-b+c=2018\end{cases}\Leftrightarrow2a+2c=4035\Leftrightarrow2a=4035-2016.2=3}\)
\(\Leftrightarrow a=\frac{3}{2}\)
thay vào ta tính dc b nha
Theo đề bài f(0)= 2017 => c= 2017
f(1)= 2018 => a + b + c = 2018 => a + b = 1 (1)
f(-1)= 2019 => a - b + c= 2019 => a - b= 2 (2)
Cộng theo vế của (1) và (2), ta được
2a = 3 => a = 3/2
=>b= -1/2
Vậy a=3/2, b=-1/2, c= 2017. Khi đó f(2)= 6 - 2 + 2017= 2021
Vậy f(2)= 2021
Do x=2017 nên x+1=2018
Với x+1=2018 thì y trở thành
y= x5-(x+1).x4+(x+1).x3-(x+1).x2+(x+1).x-1
= x5- x5-x4+x4+x3-x3-x2+x-1=x-1
Với x=2017, giá trị biểu thức f(x) là
f(2017)=2017-1=2016
Vậy ...
f(x)=ax2+bx+c
Ta có:f(0)=a.02+b.0+c=c
Mà f(0) \(\in\) Z(theo đề)=>c \(\in\) Z
f(1)=a.12+b.1+c=a+b+c
Mà f(1) \(\in\) Z(theo đề)=>a+b+c \(\in\) Z
Vì c \(\in\) Z => a+b \(\in\) Z (1)
f(-1)=a.(-1)2+b.(-1)+c=a-b+c
Mà f(-1) \(\in\) Z => a-b+c \(\in\) Z
Vì c \(\in\) Z => a-b \(\in\) Z (2)
Từ (1) và (2)=> \(\left(a+b\right)+\left(a-b\right)\in Z\Rightarrow2a\in Z\)
Vậy c,a+b,2a đều là những số nguyên (đpcm)