K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\sqrt{2x-4}+3\)

\(=\sqrt{2\cdot2-4}+3=3\)

\(f\left(2\right)=\sqrt{2\cdot2-4}+3=0+3=3\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{x+2}{x^2-2mx+m^2+2}\)

\(=\dfrac{2+2}{2^2-2m\cdot2+m^2+2}=\dfrac{4}{m^2-4m+6}\)

Để hàm số f(x) liên tục trên R thì f(x) liên tục tại x=2

=>\(\dfrac{4}{m^2-4m+6}=3\)

=>\(4=3\left(m^2-4m+6\right)\)

=>\(3m^2-12m+18-4=0\)

=>\(3m^2-12m+14=0\)

\(\Leftrightarrow3m^2-12m+12+2=0\)

=>\(3\left(m-2\right)^2+2=0\)(vô lý)

=>\(m\in\varnothing\)

28 tháng 5 2020

khi x \(\ne\)2 vs khi x = 2, sorry mk ghi nhầm

NV
14 tháng 4 2020

\(\lim\limits_{x\rightarrow-2}\frac{\sqrt{3x+10}-2-\left(x+2\right)}{x+2}=\lim\limits_{x\rightarrow-2}\frac{\frac{3\left(x+2\right)}{\sqrt{3x+10}+2}-\left(x+2\right)}{x+2}=\lim\limits_{x\rightarrow-2}\left(\frac{3}{\sqrt{3x+10}+2}-1\right)=-\frac{1}{4}\)

\(\Rightarrow\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)

\(\Rightarrow f\left(x\right)\) liên tục tại \(x=-2\)

23 tháng 10 2019

Chọn C.

Với x > 2 ta có hàm số liên tục

Để hàm số liên tục trên R thì hàm số phải liên tục trên khoảng (-∞; 2) và liên tục tại x = 2.

- Hàm số liên tục trên (-∞; 2) khi và chỉ khi tam thức

TH 1

TH 2: 

Nên  thì 

Hàm số liên tục tại  (thỏa (*))

\(\lim\limits_{x->2^-}=\dfrac{2^2-6\cdot2+8}{\sqrt{3\cdot2+2}-2}=0\)

\(\lim\limits_{x->2^+}=\dfrac{2+8}{2-1}=10< >0\)

=>f(x) không liên tục tại x=2

NV
27 tháng 4 2020

Để hs có đạo hàm trước hết nó phải liên tục

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=f\left(2\right)=1\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=2b+c+4\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^+}f\left(x\right)=f\left(x\right)\Rightarrow2b+c+4=1\Rightarrow2b+c=-3\)

Mặt khác ta có: \(f'\left(x\right)_{-\sqrt{5}\le x\le2}=\frac{-x}{\sqrt{5-x^2}}\Rightarrow\lim\limits_{x\rightarrow2^-}f'\left(x\right)=\frac{-2}{1}=-2\)

\(f'\left(x\right)_{x>2}=2x+b\Rightarrow\lim\limits_{x\rightarrow2^+}f'\left(x\right)=b+4\)

Để hàm số có đạo hàm tại \(x=2\)

\(\Rightarrow\left\{{}\begin{matrix}2b+c=-3\\b+4=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-6\\c=9\end{matrix}\right.\)