K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

giúp tớ đi =))

 

13 tháng 8 2021

\(f\left(x\right)=3x^2+1\)

\(f\left(x+1\right)=3\left(x+1\right)^2+1\\ f\left(x+1\right)=3\left(x^2+2x+1\right)+1\\ f\left(x+1\right)=3x^2+6x+3+1\\ f\left(x+1\right)=3x^2+6x+4\\ f\left(x+1\right)-f\left(x\right)=3x^2+6x+4-3x^2-1\\ f\left(x+1\right)-f\left(x\right)=6x+3\)

Vậy y = f (x+1) - f (x) là hàm số bậc nhất.

8 tháng 11 2018

Ta có: f(x+1) = 3(x+1)2+1

f(x) = 3x2+1

=> f(x+1) - f(x) = 3(x+1)2 +1 - 3x2 - 1 = 3(x2+2x+1) +1 -3x2 -1

= 3x2 +6x +3 + 1 - 3x2 -1 = 6x + 3 (Là hàm số bậc nhất)

=> f(x+1) - f(x) là hàm số bậc nhất.

27 tháng 1 2024

cho mình hỏi tại sao f(x+1)= 3(x+1)2+1 vậy ạ

 

a: \(f\left(x\right)=4x+a-\sqrt{3}\left(2x+1\right)\)

\(=4x+a-2\sqrt{3}\cdot x-\sqrt{3}\)

\(=x\left(4-2\sqrt{3}\right)-\sqrt{3}+a\)

Vì \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2>0\)

nên hàm số \(y=f\left(x\right)=x\left(4-2\sqrt{3}\right)+a-\sqrt{3}\) luôn đồng biến trên R

b: f(x)=0

=>\(x\left(4-2\sqrt{3}\right)+a-\sqrt{3}=0\)

=>\(x\left(4-2\sqrt{3}\right)=-a+\sqrt{3}\)

=>\(x=\dfrac{-a+\sqrt{3}}{4-2\sqrt{3}}\)

21 tháng 12 2018

 Do x 1 < x 2  nên x 1 − x 2 < 0

Ta có:

f x 1 − f x 2 = 3 x 1 + 1 − 3 x 2 + 1 = 3 x 1 − x 2 < 0 ⇔ f x 1 < f x 2

Vậy hàm số y = 3x + 1 đồng biến trên R

24 tháng 11 2018

Do x1 < x2 nên x1 - x2 < 0

Ta có: f(x1 ) - f(x2 )=(3x1 + 1) - (3x2 + 1) = 3(x1 - x2 ) < 0

⇔ f(x1 ) < f(x2 )

Vậy hàm số y = 3x + 1 đồng biến trên R

23 tháng 11 2021

Answer:

Ta có: 

\(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\)

\(=6x-1-2\sqrt{5}x+\sqrt{5}\)

\(=x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\)

Mà: Hàm số bậc nhất có dạng \(y=ax+b\) trong đó: \(a,b\inℝ;a\ne0\)

Ta thấy: 

\(a=6-2\sqrt{5}\ne0\)

\(b=\sqrt{5}-1\inℝ\)

\(\Rightarrow x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\) là hàm số bậc nhất

\(\Rightarrow y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) là hàm số bậc nhất

Ta thấy: 

Hệ số \(a=6-2\sqrt{5}\)

Mà: Hàm số đồng biến khi hệ số \(a>0\) và nghịch biến khi \(a< 0\)

Thấy được:

\(6-2\sqrt{5}>0\)

\(\Rightarrow a=6-2\sqrt{5}>0\)

Vậy hàm số \(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) đồng biến trên \(ℝ\)

23 tháng 11 2021

\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)

Hs bậc nhất là a,b,d,e

\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)