Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(a+b) = f(a.b) với mọi a và b thuộc R vậy nên ta có f(x) không phụ thuộc vào x.
Vậy f(2016) = -1/2
Với mọi x thỏa mãn: f( a + b ) = f (ab)
=>f( 0 ) = f( -1/2 . 0 ) = f ( -1/2 + 0 ) = f( -1/2 ) = -1/2
=> f ( 2006 ) = f ( 2006 + 0 ) = f(2006 . 0 ) = f(0 ) = -1/2
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
Với x=2
\(\implies\) \(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\left(1\right)\)
Với x=\(\frac{1}{2}\)
\(\implies\) \(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\)
\(\implies\)\(3.f\left(\frac{1}{2}\right)+9f\left(2\right)=\frac{3}{4}\left(2\right)\)
Lấy (2) - (1) vế với vế ta được:
\(3f\left(\frac{1}{2}\right)+9f\left(2\right)-f\left(2\right)-3.f\left(\frac{1}{2}\right)=-\frac{13}{4}\)
\(\implies\) \(8f\left(2\right)=-\frac{13}{4}\)
\(\implies\)\(f\left(2\right)=-\frac{18}{32}\)
\(f\left(\frac{1}{3}\right)+2f\left(\frac{1}{\frac{1}{3}}\right)=\left(\frac{1}{3}\right)^2\Rightarrow f\left(\frac{1}{3}\right)+2f\left(3\right)=\frac{1}{9}\)(1)
\(f\left(3\right)+2f\left(\frac{1}{3}\right)=3^2\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=18\)(2)
Từ (1) và (2) \(\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)-2f\left(3\right)=18-\frac{1}{9}\)
\(\Rightarrow3f\left(\frac{1}{3}\right)=\frac{161}{9}\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}\)
\(f\left(243\right)=f\left(3\cdot81\right)=-2\cdot f\left(3\cdot27\right)=4\cdot f\left(3\cdot9\right)=-8\cdot f\left(3\cdot3\right)=16\cdot\left(-2\right)=-32\)
+ \(f\left(a+b\right)=f\left(a\cdot b\right)\) (1)
+ Thay \(a=0,b=-\dfrac{1}{2}\) vào (1) ta có :
\(f\left(0-\dfrac{1}{2}\right)=f\left(0\cdot-\dfrac{1}{2}\right)\)
\(\Rightarrow f\left(-\dfrac{1}{2}\right)=f\left(0\right)\)
\(\Rightarrow f\left(0\right)=-\dfrac{1}{2}\)
+ Thay \(a=0,b=2016\) vào (1) ta có :
\(f\left(0+2016\right)=f\left(0\cdot2016\right)\)
\(\Rightarrow f\left(2016\right)=f\left(0\right)\)
\(\Rightarrow f\left(2016\right)=-\dfrac{1}{2}\)
f\(\left(\dfrac{-1}{2}\right)\) nha