K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).

19 tháng 11 2023

a: \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^+}x^2-3=3^2-3=6\)

\(\lim\limits_{x\rightarrow3^-}f\left(x\right)=\lim\limits_{x\rightarrow3^-}x+3=3+3=6\)

b: Vì \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)=6\)

nên hàm số tồn tại lim khi x=3

=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=6\)

NV
15 tháng 3 2022

\(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}\) hữu hạn \(\Rightarrow f\left(x\right)+1=0\) có nghiệm \(x=2\Rightarrow f\left(2\right)=-1\)

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{f\left(x\right)+2x+1}-x}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{1}{\sqrt{f\left(x\right)+2x+1}+x}.\dfrac{\left(\sqrt{f\left(x\right)+2x+1}-x\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\dfrac{f\left(x\right)+1-x\left(x-2\right)}{x-2}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\left(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}-\lim\limits_{x\rightarrow2}\dfrac{x\left(x-2\right)}{x-2}\right)\)

\(=\dfrac{1}{4\left(\sqrt{4}+2\right)}.\left(a-2\right)=\dfrac{a-2}{16}\)

NV
20 tháng 5 2020

d/

\(f'\left(x\right)=4cos^2\frac{x}{2}-2x.2cos\frac{x}{2}.sin\frac{x}{2}=2\left(1+cosx\right)-2x.sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2+2cosx-2x.sinx=8cos\frac{x}{2}-3-2sinx\)

Chà, có vẻ bạn ghi ko đúng đề, pt này ko giải được.

Chắc \(g\left(x\right)=8cos\frac{x}{2}-3-2x.sinx\) mới đúng chứ nhỉ?

NV
20 tháng 5 2020

c/

\(f'\left(x\right)=4x.cos^2\frac{x}{2}-2x^2.cos\frac{x}{2}.sin\frac{x}{2}=2x\left(1+cosx\right)-x^2sinx\)

\(f'\left(x\right)=g\left(x\right)\)

\(\Leftrightarrow2x\left(1+cosx\right)-x^2sinx=x-x^2sinx\)

\(\Leftrightarrow2x\left(1+cosx\right)=x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2\left(1+cosx\right)=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow cosx=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
10 tháng 4 2021

1. Áp dụng quy tắc L'Hopital

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)

2.

\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\) 

2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm