K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

31 tháng 3 2017

a) Xét hàm số y = f(x)=12x4−3x2+32f(x)=12x4−3x2+32 (C) có tập xác định: D = R

y’ = 2x3 – 6x = 2x(x2 – 3)

y’ = 0 ⇔ x = 0, x = ±√3

Bảng biến thiên:

Đồ thị hàm số:

b)

y’’ = 6x2 – 6x

y’’ = 0 ⇔ 6x2 – 6x = 0 ⇔ x = ± 1

y’(-1) = 4, y’’(1) = -4, y(± 1) = -1

Tiếp tuyến của (C) tại điểm (-1, -1) là : y = 4(x+1) – 1= 4x+3

Tiếp tuyến của (C) tại điểm (1, -1) là: y = -4(x-1) – 1 = -4x + 3

c) Ta có: \(x^4-6x^2+3=m\)\(\Leftrightarrow\dfrac{x^4}{2}-3x^2+\dfrac{3}{2}=\dfrac{m}{2}\).

Số nghiệm của (1) là số giao điểm của (C) và đường thẳng (d) : \(y=\dfrac{m}{2}\).

Dễ thấy:

m < -6: ( 1) vô nghiệm

m = -6 : (1) có 2 nghiệm

-6 < m < 3: (1) có 4 nghiệm

m = 3: ( 1) có 3 nghiệm

m > 3: (1) có 2 nghiệm

 

31 tháng 3 2017

a) Tập xác định : D = R

limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3limx→−∞⁡f(x)=+∞limx→+∞⁡f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3

Bảng biến thiên:

Đồ thị hàm số:

b) y=f(x) = f(x) = -x3+3x2+9x+2.

f’(x) = -3x2+6x+9. Do đó:

f’(x-1)=-3(x-1)2+6(x-1)+9

= -3x2 + 12x = -3x(x-4) > 0 ⇔ 0 < x < 4

c) f’’(x) = -6x+6

f’’(x0) = -6 ⇔ -6x0 + 6 = -6 ⇔ x0 = 2

Do đó: f’(2) = 9, f(2) = 24. Phương trình tiếp tuyến của (C) tại x0 = 2 là:

y=f’(2)(x-2) + f(2) hay y = 9x+6

23 tháng 1 2016

Biến đổi : 

\(\frac{8\cos x}{3\sin^2x+2\sqrt{3}\sin x\cos x+\cos x^2}=\frac{8\cos x}{\left(\sqrt{3}\sin x+\cos x\right)^2}\)

Giả sử :

\(8\cos x=a\left(\sqrt{3}\sin x+\cos x\right)+b\left(\sqrt{3}\cos x-\sin x\right)=\left(a\sqrt{3}-b\right)\sin x+\left(a+b\sqrt{3}\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có hệ :

\(\begin{cases}a\sqrt{3}-b=0\\a+b\sqrt{3}=8\end{cases}\)\(\Leftrightarrow\begin{cases}a=2\\b=2\sqrt{3}\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2}{\sqrt{3}\sin x-\cos x}-\frac{2\sqrt{3}\left(\left(\sqrt{3}\cos x-\sin x\right)\right)}{\sqrt{3}\sin x-\cos x}\)

Trong đó :

\(F\left(x\right)=\int\frac{2dx}{\sqrt{3}\sin x+\cos x}-\frac{2\sqrt{3}\left(\sqrt{3}\cos x-\sin x\right)dx}{\sqrt{3}\sin x+\cos x}=\frac{1}{2}\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{12}\right)\right|-\frac{2\sqrt{3}}{\sqrt{3}\sin x+\cos x}+C\)

 

23 tháng 1 2016

ko biết

tick nhé

2 tháng 4 2017

a) f(x) = 2x3 – 3x2 – 12x + 1 ⇒ f’(x) = 6x2 – 6x – 12

f’(x) = 0 ⇔ x ∈ {-1, 2}

So sánh các giá trị:

f(x) = -3; f(-1) = 8;

f(2) = -19, f(52)=−332f(52)=−332

Suy ra:

maxx∈[−2,52]f(x)=f(−1)=8minx∈[−2,52]f(x)=f(2)=−19maxx∈[−2,52]⁡f(x)=f(−1)=8minx∈[−2,52]⁡f(x)=f(2)=−19

b) f(x) = x2 lnx ⇒ f’(x)= 2xlnx + x > 0, ∀ x ∈ [1, e] nên f(x) đồng biến.

Do đó:

maxx∈[1,e]f(x)=f(e)=e2minx∈[1,e]f(x)=f(1)=0maxx∈[1,e]⁡f(x)=f(e)=e2minx∈[1,e]⁡f(x)=f(1)=0

c) f(x) = f(x) = xe-x ⇒ f’(x)= e-x – xe-x = (1 – x)e-x nên:

f’(x) = 0 ⇔ x = 1, f’(x) > 0, ∀x ∈ (0, 1) và f’(x) < 0, ∀x ∈ (1, +∞)

nên:

maxx∈[0,+∞)f(x)=f(1)=1emaxx∈[0,+∞)⁡f(x)=f(1)=1e

Ngoài ra f(x) = xe-x > 0, ∀ x ∈ (0, +∞) và f(0) = 0 suy ra

maxx∈[0,+∞)f(x)=f(0)=0maxx∈[0,+∞)⁡f(x)=f(0)=0

d) f(x) = 2sinx + sin2x ⇒ f’(x)= 2cosx + 2cos2x

f’(x) = 0 ⇔ cos 2x = -cosx ⇔ 2x = ± (π – x) + k2π

x∈{−π+k2π;π3+k2π3}x∈{−π+k2π;π3+k2π3}

Trong khoảng [0,3π2][0,3π2] , phương trình f’(x) = 0 chỉ có hai nghiệm là x1=π3;x2=πx1=π3;x2=π

So sánh bốn giá trị : f(0) = 0; f(π3)=3√32;f(π)=0;f(3π2)=−2f(π3)=332;f(π)=0;f(3π2)=−2

Suy ra:

maxx∈[0,3π2]f(x)=f(π3)=3√32minx∈[0,3π2]f(x)=f(3π2)=−2



2 tháng 4 2017

Ta có:

f(x) = ax2 – 2(a + 1)x + a + 2 = (x – 1)(ax – a- 2) nên phương trình f(x) = 0 luôn có hai nghiệm thực là:

x = 1, x=a+2ax=a+2a

Theo định lí Vi-et, tổng và tích của các nghiệm đó là:

S=2a+2a,P=a+2aS=2a+2a,P=a+2a

1. Khảo sát sự biến thiên và vẽ đồ thị hàm số S=2a+2a=2+2aS=2a+2a=2+2a

- Tập xác định : (-∞, 0)∪ (0, +∞)

- Sự biến thiên: S′=−2a2<0,∀a∈(−∞,0)∪(0,+∞)S′=−2a2<0,∀a∈(−∞,0)∪(0,+∞) nên hàm số nghịch biến trên hai khoảng (-∞, 0) và (0, +∞)

- Cực trị: Hàm số không có cực trị

- Giới hạn tại vô cực và tiệm cận ngang

lima→+∞S=lima→+∞(2+2a)=2lima→−∞S=lima→−∞(2+2a)=2lima→+∞⁡S=lima→+∞⁡(2+2a)=2lima→−∞⁡S=lima→−∞⁡(2+2a)=2

Vậy S = 2 là tiệm cận ngang

- Giới hạn vô cực và tiệm cận đứng:

lima→0+S=lima→0+(2+2a)=+∞lima→0−S=lima→0−(2+2a)=−∞lima→0+⁡S=lima→0+⁡(2+2a)=+∞lima→0−⁡S=lima→0−⁡(2+2a)=−∞

Vậy a = 0 là tiệm cận đứng.

- Bảng biến thiên:

Đồ thị hàm số:

Đồ thị không cắt trục tung, cắt trục hoành tại a = -1

2) Khảo sát sự biến thiên và vẽ đồ thị hàm số P=a+2a=1+2aP=a+2a=1+2a

Tập xác định: D = R\{0}

S′=−2a2<0,∀a∈DS′=−2a2<0,∀a∈D

lima→0−S=−∞lima→0−⁡S=−∞⇒ Tiệm cận đứng: a = 0

lima→±∞S=1lima→±∞⁡S=1⇒ Tiệm cận ngang: S = 1

Đồ thị hàm số:

Ngoài ra: đồ thị hàm số P=a+2a=1+2aP=a+2a=1+2a có thể nhận được bằng cách tịnh tiến đồ thị S=2a+2a=2+2aS=2a+2a=2+2a dọc theo trục tung xuống phía dưới 1 đơn vị.



25 tháng 6 2019

Hình như gặp ở đâu rồi:

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\). a) 1 b) 2019 c) 2020 d) 0 Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết...
Đọc tiếp

Câu 1: Cho hàm số \(y=f\left(x\right)\), biết \(f’\left(x\right)=k\left(\frac{\sqrt{m}-m}{m^2}\right)\left(x-k\right)\) ( m,k là các hằng số ). Tìm tấc cả các giá trị nguyên của \(m\) thuộc \(\left[0;2020\right]\) để đồ thị hàm số \(y=f\left(x\right)\) có duy nhất một cực đại tại \(x=k\) \(\forall k\in\left[1;10\right]\).
a) 1

b) 2019

c) 2020

d) 0

Câu 2: Cho hàm số \(y=f\left(x\right)\) liên tục trên \(R\). Biết \(f‘\left(0\right)=1,f\left(1\right)=0\), GTLN hàm số \(f\left(x\right)\) trên đoạn \(\left[0;1\right]\) bằng \(\frac{4}{27}\) tại điểm \(x=\frac{1}{3}\)\(\int\limits^1_0f”\left(x\right)f’\left(x\right)dx=-\frac{1}{2}\). Hỏi phương trình \(f\left(\sqrt[3]{x}\right)=\sqrt[3]{x}\) có bao nhiêu nghiệm

a) 3

b) 2

c) 1

d) 0

Câu 3: Cho hàm số \(y=f\left(x\right)\)\(f’\left(x\right)=x\left(x-2\right)\left(x^2-x\right)^{11}\). Hỏi hàm số \(y=f\left(\frac{2\sqrt{x-2}}{x-2}\right)\) đồng biến trên khoảng

0