K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

\(limu_n=lim\dfrac{1}{n}=0\); \(limv_n=lim\left(-\dfrac{1}{n}\right)=0\).
\(limf\left(u_n\right)=lim\left(\sqrt{\dfrac{1}{n}}+1\right)=1\).
\(limf\left(v_n\right)=lim\left(2.\dfrac{-1}{n}\right)=lim\dfrac{-2}{n}=0\).
Hai dãy số \(\left(u_n\right)\)\(\left(v_n\right)\) đều có giới hạn 0 khi n tiến ra dương vô cùng nhưng \(limf\left(u_n\right)\ne limf\left(v_n\right)\) nên f không có giới hạn tại \(x=0\).

31 tháng 7 2020

b, \(J=lim_{x\rightarrow0}\left(\cos x\right)^{\frac{1}{x^2}}\)

31 tháng 7 2020

Giúp mình giải câu 3 và 4 với ạBài 3a. Tính nguyên hàm - tích phân bằng phương pháp đổi biến số

4 tháng 4 2017

a) Các bạn tự vẽ hình nhé . Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).

b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).

+) Nếu x> -1: f(x) = x2 – 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).

+) Tại x = -1;

Ta có =ham-so-lien-tuc= 3(-1) +2 = -1.

ham-so-lien-tuc= (-1)2 – 1 = 0.

ham-so-lien-tucnên không tồn tại ham-so-lien-tuc. Vậy hàm số gián đoạn tại
x0 = -1.

26 tháng 5 2017

TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) D = (10.58, -5.6) D = (10.58, -5.6) D = (10.58, -5.6)

Tham khảo:

Xét hàm số g(x) = f(x) − f(x + 0,5)

Ta có

g(0) = f(0) − f(0 + 0,5) = f(0) − f(0,5)

g(0,5) = f(0,5) − f(0,5 + 0,5) = f(0,5) − f(1) = f(0,5) − f(0)

(vì theo giả thiết f(0) = f(1)).

Do đó,

undefined

 
4 tháng 4 2017

+) Hàm số ham-so-lien-tuc xác định khi và chỉ khi x2+ x – 6 ≠ 0 <=> x ≠ -3 và x ≠ 2.

Hàm số f(x) liên tục trên các khoảng (-∞; -3), (-3; 2) và (2; +∞)

+) Hàm số g(x) = tanx + sinx xác định khi và chỉ khi

tanx ≠ 0 <=> x ≠ π/2 +kπ với k ∈ Z.

Hàm số g(x) liên tục trên các khoảng ( – π/2+kπ; π/2 +kπ) với k ∈ Z.

7 tháng 5 2016

Theo định nghĩa ta có :

\(f'\left(x\right)=\lim\limits_{\Delta x\rightarrow0}\frac{f\left(a+\right)-f\left(a\right)}{\Delta x}\)

         \(=\lim\limits_{\Delta x\rightarrow0}\frac{\left(a+\Delta x-1\right)\varphi\left(a+\Delta x\right)}{\Delta x}\) do (\(f\left(a\right)=0\))

          \(=\lim\limits_{\Delta x\rightarrow0}\varphi\left(a+\Delta x\right)\)

Khi \(\Delta x\rightarrow0\) thì \(a+\Delta x\rightarrow a\) và do \(\varphi\left(x\right)\) là hàm liên tục tại x = a nên có :

\(\lim\limits_{\Delta x\rightarrow0}\varphi\left(a+\Delta x\right)=\varphi\left(a\right)\)

Vậy \(f'\left(a\right)=\varphi\left(a\right)\)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Hàm số này có tập xác định là R \ {0}

Giải sách bài tập Toán 11 | Giải sbt Toán 11undefined