Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có: \(\frac{x_1}{y_2}=\frac{x_2}{y_1}\Rightarrow\frac{x_1^2}{y_2^2}=\frac{x_2^2}{y_1^2}=\frac{x_1^2+x_2^2}{y_1^2+y_2^2}=\frac{2^2+3^2}{52}=\frac{1}{4}\)
\(\Rightarrow\frac{x_1^2}{y_2^2}=\frac{1}{4}\Rightarrow y_2^2=16\Rightarrow\)\(\orbr{\begin{cases}y_2=-4\\y_2=4\end{cases}\Rightarrow}\)\(\orbr{\begin{cases}y_1=-6\\y_1=6\end{cases}}\)
=> KL....
I2x+3I=x+2
TH1: Nếu \(x\le-\frac{3}{2}\)(*), =>I2x+3I=-2x-3
PT: -2x-3=x+2 <=> x=\(-\frac{5}{3}\)(tm (*))
TH2: Nếu \(x>-\frac{3}{2}\)(**), => I2x+3I=2x+3
PT: 2x+3=x+2 => x=-1 (tm (**))
Vậy x=...
Ta có: \(F\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(F\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(F\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=1 ta có \(F\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(F\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có \(F\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) \(\Rightarrow\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)+\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\)\(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+8c\right)-\left(8a+2c\right)⋮5\)
\(\Rightarrow6c⋮5\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\)
Vậy \(a,b,c,d⋮5\)
cho đa thức f(x)=a4x4+a3x3+a2x2+a1x+a0
biết rằng f(1)=f(-1);f(2)=f(-2)
chứng minh f(x)=f(-x) với mọi x
f(1) = f(-1)
=> a4 + a3 + a2 + a1 + a0 = a4 - a3 + a2 - a1 + a0
=> a3 + a1 = - a3 - a1
=> a3 = a1 = 0 hoặc a3 = -a1 (1)
f(2) = f(-2)
=> 16a4 + 8a3 + 4a2 + 2a1 + a0 = 16a4 - 8a3 + 4a2 - 2a1 + a0
=> 8a3 + 2a1 = - 8a3 - 2a1
=> a3 = a1 = 0 hoặc 4a3 = -a1 (2)
(1) và (2) => a3 = a1 = 0
=> f(x) = a4x4 + a2x2+ a0
x4 và x2 là số mũ chẵn
=> x4 = (-x)4 và x2 = (-x)2
=> f(x) = f(-x) với mọi x
Theo mình biết thì cái này là hàm số chẵn.
b/ Theo đề bài thì ta có:
\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)
Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)
\(=2a_3x^3+2a_1x=0\)
Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x
a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)
Thế vào B ta được
\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)
\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)
CMR: S chia hết cho 6 <=> P chia hết cho 6 ....
Cho các số a1,a2,a3,a4,......,a2013 là số tự nhiên có tổng bằng 2013 .
=)))))))))
Ta có: f(0)=a.02+b.0+c=c chia hết cho 3
=>c chia hết cho 3 (1)
Ta có: f(-1)=a(-1)2+b(-1)+c=a-b+c chia hết cho 3
Mà từ (1)
=>a-b chia hết cho 3 (2)
Khi x=1 ta có:
f(1)=a(1)2+b.1+c=a+b+c chia hết cho 3
Mà từ (1)
=>a+b chia hết cho 3 (3)
Từ (2) và (3)
=>(a-b)+(a+b)=2a chia hết cho 3
Mà (2;3)=1
=>a chia hết cho 3 (4)
Từ (2) và (3)
=>(a-b)-(a+b)=-2b chia hết cho 3
=>2b chia hết cho 3
Mà (3;2)=1
=>b chia hết cho 3 (5)
Từ (1);(4);(5)=>a;b;c chia hết cho 3