K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

Để hàm số trên là hàm số bậc nhất \(\Leftrightarrow2-a\ne0\Leftrightarrow a\ne2\)

Đồ thị hàm số đi qua điểm M(3;1) => x=3; y=1.

Thay x=3; y=1 vào hàm số đã cho, ta có:

\(1=\left(2-a\right).3+a\)

\(\Leftrightarrow6-3a+a=1\)

\(\Leftrightarrow-2a+6=1\)

=> Khi x=3; y=1 thì hệ số của a là -2 < 0

Vậy hàm số trên là hàm số nghịch biến trên R.

10 tháng 2 2021

10 tháng 2 2021

Cho hàm số y = (2 - a)x + a, biết đồ thị hàm số đi qua điểm M (3;1), hàm số đồng biến hay nghịch biến trên R==========hàm số y = (2 - a)x + a, biết đồ thị hàm số đi qua điểm M (3;1)<=>1=(2-a)3+a<=>1=6-3a +a<=>2a =5<=>a =5/2=>y=-1/2x+5/2a =-1/2<0=> nghịch biến trên R

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

a. Vì $(d)$ đi qua $M(3;1)$ nên:

$y_M=(2-a)x_M+a$

$\Leftrightarrow 1=(2-a).3+a\Rightarrow a=2,5$

Khi đó: $y=(2-2,5)x+2,5=-0,5x+2,5$

Vì $-0,5<0$ nên hàm nghịch biến trên R.

b.

$y_A=3$

$-0,5x_A+2,5=-0,5.(-1)+2,5=3$

$\Rightarrow y_A=-0,5x_A+2,5$ nên điểm $A\in (d)$

c. Gọi PTĐT $(d')$ là: $y=mx+n$ với $m,n$ là số thực

$(d')\parallel (d)$ nên $m=-0,5$

$M(3;1), N(-1,5)\Rightarrow$ tọa độ trung điểm $I$ của $MN$ là:

$(\frac{3-1}{2}; \frac{1+5}{2})=(1,3)$

$(d')$ đi qua $(1,3)$ nên:

$3=m.1+n\Rightarrow m+n=3\Rightarrow n=3-m=3-(-0,5)=3,5$

Vậy PTĐT $(d')$ là: $y=-0,5x+3,5$

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lời giải:

Vì ĐTHS đi qua $M(3,1)$ nên: $y_M=(2-a)x_M+a$

$\Leftrightarrow 1=(2-a).3+a\Rightarrow a=2,5$

$\Rightarrow 2-a=2-2,5=-0,5< 0$

Do ddos hàm số trên nghịch biến trên $R$

25 tháng 3 2020

Cho em hỏi làm sao ra được a=2,5

Câu a :))

Hàm số đã cho đồng biến .

giải thích :

Do \(m^2\ge0\forall m\)

\(\Rightarrow m^2+1>0\)

Vậy hàm số trên đồng biến.

16 tháng 1 2019

Giả sử đths đi qua điểm cố định ( x0;y0 )

Ta có y0 = ( m2 +1 )x0 - 1

  <=> y0 = m2 x0 +x0 -1

<=> y0 -x0 +1 -m2x0 = 0

Để pt nghiệm đúng với mọi m \(\Leftrightarrow\hept{\begin{cases}y_0-x_0+1=0\\x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}y_0=-1\\x_0=0\end{cases}}}\)

Vậy đths luôn đi qua điểm cố định ( 0 ; -1 )

29 tháng 12 2021

a: Hàm số này nghịch biến vì -2<0

25 tháng 5 2022

Để đồ thị hàm số đi qua điểm \(M\left(2021;2022\right)\)

Thay \(x=2021;y=2022\) ta có:

\(2022=2021\left(m-2\right)+1\)

\(\Rightarrow2021\left(m-2\right)=2021\Rightarrow m-2=1\Rightarrow m=3\)

Khi đó ta có hàm số: \(y=x+1\)

Do \(1>0\) nên hàm số đồng biến trên R.