K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

Vì M tương ứng với O mà \(\Delta\)MNP =  \(\Delta\)OEG 

=> NP = EG mag NP = 7 cm => EG = 7 cm 

Chu vi \(\Delta\)OEG = chu vi \(\Delta\)MNP = 6 + 5 + 7 = 18 (cm) 

27 tháng 6 2017

Câu 1: 

a) A = E ; đỉnh A đối với đinh E

 B = D ; đỉnh B đối với đỉnh D

-> Hình tam giác ABC  = hình tam giác EDF

b)AB = EF { A đối với E hoặc F }(1)

                   { B đối với E hoặc F }

AC = FD    { A đối với F hoặc D }

                   { C đối với F hoặc D }

Ta có: => A phải đối với F

                B phải đối với E -> hình tam giác ABC = hình tam giác FED

                C đối với D

27 tháng 6 2017

Câu 2 chưa ra sorry nhe !!!

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối ADa)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần...
Đọc tiếp

1/ Cho tam giác ABC vuông tại A và góc C bằng 30 độ . Vẽ trung trực của AC , cắt AC tại H và BC tại D , nối AD

a)Chứng minh tam giác ABD đều(sẵn vẽ hình giúp mình nhé)

b)Kẻ phân giác của góc B cắt AD tại K và cắt DH kéo dài I. CM: I là tâm đường tròn đi qua ba đỉnh của tam giác ADC 

c)Vẽ IE vuông góc với DC; IF vuông góc với AB kéo dài. CM:IF=IE=IK

2/ Cho tam giác ABC vẽ AH vuông góc với BC. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Kéo dài HI một đoạn ID=HI và kéo dài HK một đoạn KE=HK. CM:A nằm trên trung trực của DE( vẽ hình giúp mình nhé các bạn )

3/Cho tam giác ABC cân tại A,M và N là hai điểm tương ứng thuộc hai cạnh AB và AC sao cho BM=AN. Gọi O là điểm cách đều ba đỉnh A,B,C .CM: Ocách đều 2 điểm M và N

4/Trên cạnh AB,BC,AC của tam giác đều ABC . Lấy các điểm theo thứ tự M,N,P sao cho AM=BN=CP.Gọi O là giao điểm của 3 đường trung trực của tam giác ABC . CM: O cũng là giao điểm của ba đường trung trực của tam giác MNP

5/Cho tam giác đều ABC . Trên các cạnh BC,CA,AB lần lượt lất các điểm D,E,F sao cho BD=CE=AF.CM:

a)Tam giác AEF đều

b)Các trung trực của ABC và DEF cùng đi qua một điểm

6/Cho tam giác ABC vuông tại A. Tia phân giác BD và CE cắt nhai tại O 

a)Chứng tỏ O cách đều ba cạnh của tam giác 

b)Từ D và E hạ d8oừng vuông góc xuống BC và cắt CB tại H và K . Tính số đo góc HAk

Mong mọi người vẽ hình và giúp mình giải các bài trên nhé nếu có dài quá thì cho mình xin lỗi

0
21 tháng 2 2019

\(333^{555^{777}}+777^{555^{333}}\)

\(333^{555^{777}}=333^{555.555....555}\left(\text{có 777 số 555}\right)=\left(333^{555}\right)^{555...555}\)

\(333^{555}=3^{555}.111^{555}=\left(3^5\right)^{111}.111^{555}\)

\(\left(3^5\right)^{111}=243^{111}=243^{100}.243=\left(243^4\right)^{25}.243=\overline{...1}.243\text{ có c/s tận cùng là 3}\)

\(\Rightarrow\left(3^5\right)^{111}.111^{555}\text{ có c/s tận cùng là 3 hay }333^{555}\text{ có c/s tận cùng là 3}\)

\(\Rightarrow\left(333^{555}\right)^{555.555....555}\text{có c/s tận cùng là 5}\Rightarrow333^{555^{777}}\text{có c/s tận cùng là 5}\)

tương tự cái kia =)

p/s: bài này không dễ, sai bỏ qua 

21 tháng 2 2019

mọe, t làm lộn => sai mẹ cả bài T.T

dòng thứ 4

\(\left(3^5\right)^{111}=243^{111}=243^{110}.243=\left(243^2\right)^{55}.243=\overline{...9}.243\text{ có c/s tận cùng là 7}\)

\(\Rightarrow\left(3^5\right)^{111}.111^{555}\text{ có c/s tận cùng là 7 hay }333^{555}\text{ có c/s tận cùng là 7}\)

mà bài này max khó >: t chịu......lúc nãy làm sai bét be  :"(

p/s: t cần vài ngày để nghĩ_còn ko làm đc thì thôi 

1 tháng 11 2016

câu a : tam giac ABC= tam giac FED

cau b :tam giac ABC=tam giac EFD

16 tháng 9 2016

Ta vẽ được 1 đường thẳng a và 1 dường thẳng b vì theo tiên đề Ơ-clit thì:"qua 1 điểm nằm ở ngoài một đường thẳng chỉ có 1 đường thẳng song song với đường thẳng đó

16 tháng 9 2016

Cảm ơn bạn kudo shinichi

2 tháng 5 2019

B C I H F E A

a)Ta có: BAI=CAI (AI là đường phân giác BAC)

Do:FH//AI=>CFH=CAI và BAI=AEF( đồng vị)

Mà:CFH=AFE(2 góc đối đỉnh)

Suy ra: AFE=AEF

Xét \(\Delta\)AFE:AFE=AEF=>\(\Delta\)AFE cân tại A=>Đường trung trực của EF đồng thời là đường cao

Hay:Đường trung trực của EF đi qua A

b) Như đã nói ở câu a:Đường trung trực của EF đồng thời là đường cao, giả sử ấy là AM

Ta có:AMF=90

Mà FH//AI=>AMF+MAI=180=>MAI=90=>AM\(\perp\)AI

Hay đường trung trực của EF vuông góc với AI

c)Do AI cố định nên đường trung trực của EF cố định

Mà \(\Delta\)AFE cân nên đường trung trực của EF đồng thời là đường trung tuyến ứng với EF

Hay đường trung tuyến ứng với EF cố định