Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(xy\left(x+y\right)^2\le\frac{1}{64}\)\(\Rightarrow\)\(\sqrt{xy\left(x+y\right)^2}\le\sqrt{\frac{1}{64}}\)
\(\Rightarrow\)\(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)
ta cần c/m \(\sqrt{xy}\left(x+y\right)\le\frac{1}{8}\)
Thật vậy, ta có
Áp dụng BĐT : \(ab\le\frac{\left(a+b\right)^2}{4}\). Dấu "=" xảy ra \(\Leftrightarrow\)a = b
\(\sqrt{xy}\left(x+y\right)=\frac{1}{2}.2\sqrt{xy}\left(x+y\right)\le\frac{1}{2}.\frac{\left(x+2\sqrt{xy}+y\right)^2}{4}=\frac{\left(\sqrt{x}^2+2\sqrt{xy}+\sqrt{y}^2\right)^2}{4}.\frac{1}{2}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^4}{8}=\frac{1}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{4}\)
Áp dụng BĐT Bunhiacốpski, ta có:
\(\left|x-y\right|=\left|x.1+2y.\left(-\frac{1}{2}\right)\right|\le\sqrt{\left(x^2+4y^2\right)\left(1+\frac{1}{4}\right)}=\frac{\sqrt{5}}{2}\) vì \(x^2+4y^2=1\)
Theo AM - GM và Bunhiacopski ta có được
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)
\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)
Đặt \(t=\frac{z}{x+y}\ge1\)
Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)
\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)
Vậy ta có đpcm
Ta có:
\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)
Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\)
3 + (x²/y² + y²/x²) + (x²/z² + y²/z²) + (z²/x² + z²/y²)
x²/y² + y²/x² ≥ 2 (Theo AM - GM)
Nên A ≥ 5 + (x²/z² + y²/z²) + (z²/x² + z²/y²)
Sử dụng 2 BĐT quen thuộc sau:
a² + b² ≥ (1/2)*(a + b)²
1/a + 1/b ≥ 4/(a + b)
Đề thi vào lớp 10 môn Toán tỉnh Nghệ An năm 2014
https://thi.tuyensinh247.com/de-thi-vao-lop-10-mon-toan-tinh-nghe-an-nam-2014-c29a17566.html
Vào đó xem cho nó full :)))
Đặt \(P=xy\left(x+y\right)^2\)
\(P=\frac{1}{64}.4.2\sqrt{xy}\left(x+y\right).4.2\sqrt{xy}\left(x+y\right)\)
\(P\le\frac{1}{64}\left(2\sqrt{xy}+x+y\right)^2\left(2\sqrt{xy}+x+y\right)^2\)
\(P\le\frac{1}{64}\left(\sqrt{x}+\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2=\frac{1}{64}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{4}\)
Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?
1) Xét hiệu :
\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)
\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)
\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)
\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)
\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)
Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)
Áp dụng BĐT Bunhiacopxki :
\(\left(x.\sqrt{1-y^2}+\sqrt{1-x^2}.y\right)^2\le\left(x^2+1-x^2\right).\left(y^2+1-y^2\right)\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{1-x^2}\le1\Rightarrow x^2+y^2\le1\)
Lại áp dụng BĐT Bunhiacopxki : \(\left(3x+4y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)\le\left(3^2+4^2\right)\)
\(\Rightarrow\left(3x+4y\right)^2\le25\Rightarrow3x+4y\le5\)
Theo Bunhiacopski ta luôn có:
\(\left(x-y\right)^2=\left[1\cdot x+\left(-\frac{1}{2}\right)\cdot2y\right]^2\le\left(1^2+\frac{1}{4}\right)\left(x^2+4y^2\right)=\frac{5}{2}\)
\(\Rightarrow\left|x-y\right|\le\frac{\sqrt{5}}{2}\left(đpcm\right)\)