K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2015

\(\frac{x^4}{4}+\frac{y^4}{4}\ge2.\sqrt{\frac{x^4}{4}.\frac{y^4}{4}}=\frac{x^2y^2}{2}\) (BĐT Cô - si)

=> \(xy\left(2013-\frac{xy}{2}\right)\ge\frac{x^2y^2}{2}-2014\)

<=> \(2013xy-\frac{x^2y^2}{2}\ge\frac{x^2y^2}{2}-2014\) <=> \(x^2y^2-2013xy-2014\le0\) 

<=> \(\left(xy\right)^2-2014xy+xy-2014\le0\)

<=> \(\left(xy-2014\right)\left(xy+1\right)\le0\)

<=> \(-1\le xy\le2014\)

Vậy Max (xy) = 2014 khi  x2 = y và xy= 2014 => x = y = \(\sqrt{2014}\) hoặc x = y = - \(\sqrt{2014}\)

Min (xy) = -1 khi x2 = y2 và xy = -1 => x = 1; y = -1 hoặc x =- 1; y = 1

16 tháng 11 2016

Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)

Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)

Theo đề bài có

\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)

Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)

\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)

\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)

\(\Leftrightarrow-0,5\le2013-A\le0,5\)

\(\Leftrightarrow2012,5\le A\le2013,5\)

Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)

Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)

26 tháng 4 2020

\(T=\frac{1}{1+x^2}+\frac{4}{4+y^2}+xy=\frac{y^2+4+4+4x^2}{\left(1+x^2\right)\left(4+y^2\right)}+xy=\frac{y^2+4x^4+4}{\left(1+x^2\right)\left(4+y^2\right)}+xy\)

Áp dụng BĐT Cosi:

\(y^2+4x^2\ge4xy\ge8\)

\(\hept{\begin{cases}x^2+1\ge2x\\y^2+4\ge4y\end{cases}\Rightarrow\left(x^2+1\right)\left(y^2+4\right)\ge8xy\ge16}\)

=> \(\frac{y^2+4x^2+8}{\left(x^2+1\right)\left(y^2+4\right)}\ge\frac{8}{16}=\frac{1}{2}\)

=> \(T\ge\frac{1}{2}+2=\frac{5}{2}\)

\(Min_T=\frac{5}{2}\Leftrightarrow\hept{\begin{cases}y=2x\\xy=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)hoặc \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

20 tháng 5 2018

Bài này có nhiều cách làm nhá cái này mình làm bạn tham khảo thôi nhá

Ta có \(P=\frac{xy}{x^2+y^2}\)

\(\Rightarrow\frac{1}{P}=\frac{x^2+y^2}{xy}\)

Mà Theo BĐT Cô si thì

\(x^2+y^2\ge2xy\)

\(\Rightarrow\frac{1}{P}\ge\frac{2xy}{xy}=2\)

\(\frac{1}{P}\ge2\Leftrightarrow2P\le1\Leftrightarrow P\le\frac{1}{2}\)

Vậy Max \(P=\frac{1}{2}\) Khi x=y=...

Có cách ngắn hơn nhưng minhf lười =))

20 tháng 5 2018

Vậy khi x=y= gì ạ

24 tháng 1 2020

\(\frac{1}{xy}+\frac{1}{yz}\ge\frac{4}{xy+yz}=\frac{4}{y\left(x+z\right)}=\frac{4}{y\left(4-y\right)}=\frac{4}{-y^2+4y}=\frac{4}{-\left(y^2-4y+4\right)+4}\ge1\)

Dấu "=" xảy ra tại \(x=z=1;y=2\)

30 tháng 9 2018

\(P\le\frac{x}{2\sqrt{x^4.y^2}}+\frac{y}{2\sqrt{x^2.y^4}}=\frac{x}{2x^2y}+\frac{y}{2xy^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{1}{xy}=1\)

Dấu "=" xảy ra khi x=y=1

11 tháng 3 2019

theo de bai =>\(2y>=2\sqrt{xy.4}\)(co si)

=>\(\frac{\sqrt{y}}{\sqrt{x}}>=2\)=>\(\frac{y}{x}>=4\)

ta co \(A=\frac{x}{y}+\frac{2y}{x}\)đặt \(\frac{y}{x}=a\)

=>\(A=\frac{1}{a}+2a=\frac{1}{a}+\frac{a}{16}+\frac{31}{16}a>=\frac{1}{2}+\frac{31}{4}=\frac{66}{8}=\frac{33}{4}\)

<=>y=4x

4 tháng 10 2019

Áp dụng BĐT AM - GM ta có :

\(P=\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\)

\(\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}\)

\(=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

\(\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{xy+yz+xz}{xyz}\)

\(\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}\le\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!