\(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\). Chứng min...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

Ta có:        \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\)

\(\Rightarrow\frac{m+n}{mn}=\frac{1}{2}\)

\(\Leftrightarrow mn=2\left(m+n\right)\)

\(\Rightarrow2mn=4\left(m+n\right)\)

Từ Phương trình 1 lập \(\Delta_1\)

\(\Delta_1=m^2-4n\)

Phương trình 2 có \(\Delta_2=n^2-4m\)

lấy \(\Delta_1+\Delta_2\)

\(=m^2+n^2-4m-4n\)

\(=m^2-4\left(m+n\right)+n^2\)

\(=m^2-2mn+n^2\)

\(=\left(m-n\right)^2\ge0\)

vậy tồn tại delta1 hoặc delta 2 dương nên một trong 2 phương trình đã cho có ít nhất 1 phương trình có nghiệm

NV
19 tháng 6 2019

\(\frac{1}{b}+\frac{1}{c}=2\Leftrightarrow b+c=2bc\)

\(\Delta'_1=b^2-c\) ; \(\Delta'_2=c^2-b\)

\(\Rightarrow\Delta'_1+\Delta'_2=b^2+c^2-\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)

\(\Rightarrow\) Có ít nhất một trong hai biểu thức \(\Delta'\) không âm

\(\Rightarrow\) Ít nhất một trong 2 pt có nghiệm

19 tháng 6 2019

Thông minh!!!Cảm ơn bạn nhiều!Hì.

5 tháng 4 2017

b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)

Theo vi et ta có

\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và  \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)

Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)

\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)

\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)

\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)

\(=p^2-pq-pq+1+q^2-2+1\)

\(=p^2-2pq+q^2=\left(p-q\right)^2\)

5 tháng 4 2017

a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)

Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)

\(=m^2+n^2-mn-m-n+1\)

\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)

Vậy có 1 trong 2 phương trình có nghiệm

NV
4 tháng 3 2022

Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)

Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)

\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k

\(\Rightarrow\)Pt đã cho có nghiệm

4 tháng 3 2022

em đọc ko hiểu gì hết

16 tháng 2 2016

ms hok lớp 6 thuj

Nhiều thế, chắc phải đưa ra đáp thôi