\(\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 2 2019

Ta có: \(x+y\ge2\sqrt{xy}\Rightarrow3xy\ge2\sqrt{xy}+1\Rightarrow3xy-2\sqrt{xy}-1\ge0\)

\(\Rightarrow\left(3\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)\ge0\Rightarrow\sqrt{xy}-1\ge0\) (do \(3\sqrt{xy}+1>0\) )

\(\Rightarrow\sqrt{xy}\ge1\Rightarrow xy\ge1\Rightarrow1-xy\le0\)

\(P=\dfrac{y\left(x+1\right)+x\left(y+1\right)}{xy\left(x+1\right)\left(y+1\right)}=\dfrac{2xy+x+y}{xy\left(xy+x+y+1\right)}\)

\(\Rightarrow P=\dfrac{2xy+3xy-1}{xy\left(xy+3xy\right)}=\dfrac{5xy-1}{4\left(xy\right)^2}=\dfrac{-4\left(xy\right)^2+5xy-1}{4\left(xy\right)^2}+1\)

\(\Rightarrow P=\dfrac{\left(1-xy\right)\left(4xy+1\right)}{4\left(xy\right)^2}+1\)

Do \(\left\{{}\begin{matrix}1-xy\le0\\4xy+1>0\\4\left(xy\right)^2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(1-xy\right)\left(4xy+1\right)}{4\left(xy\right)^2}\le0\)

\(\Rightarrow P\le0+1=1\Rightarrow P_{max}=1\) khi \(x=y=1\)

6 tháng 4 2016

\(\left(x^3+y^3\right)\left(x+y\right)=xy\left(1-x\right)\left(1-y\right)\Leftrightarrow\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)=\left(1-x\right)\left(1-y\right)\left(1\right)\)

Ta có : \(\left(\frac{x^2}{y}+\frac{y^2}{x}\right)\left(x+y\right)\ge4xy\)

và \(\left(1-x\right)\left(1-y\right)=1-\left(x+y\right)+xy\le1-2\sqrt{xy}+xy\)

\(\Rightarrow1-2\sqrt{xy}+xy\ge4xy\Leftrightarrow0\) <\(xy\le\frac{1}{9}\)

Dễ chứng minh : \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{1}{1+xy};\left(x,y\in\left(0;1\right)\right)\)

\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\le\sqrt{2\left(\frac{1}{1+x^2}+\frac{1}{1+y^2}\right)}\le\sqrt{2\left(\frac{2}{1+xy}\right)}=\frac{2}{\sqrt{1+xy}}\)

\(3xy-\left(x^2+y^2\right)=xy-\left(x-y\right)^2\le xy\)

\(\Rightarrow P\le\frac{2}{\sqrt{1+xy}}+xy=\frac{2}{\sqrt{1+t}}+t\)\(\left(t=xy\right)\), (0<\(t\le\frac{1}{9}\)

Xét hàm số :

\(f\left(t\right)=\frac{2}{\sqrt{t+1}}+t\) ,  (0<\(t\le\frac{1}{9}\)

Ta có Max \(f\left(t\right)=f\left(\frac{1}{9}\right)=\frac{6\sqrt{10}}{10}+\frac{1}{9}\)\(t\in\left(0;\frac{1}{9}\right)\)
AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Sử dụng bổ đề: Với \(a,b>0\Rightarrow a^3+b^3\geq ab(a+b)\)

BĐT đúng vì nó tương đương với \((a-b)^2(a+b)\geq 0\) (luôn đúng)

Áp dụng vào bài toán:

\(P\leq \frac{1}{x^3yz(y+z)+1}+\frac{1}{y^3xz(x+z)+1}+\frac{1}{z^3xy(x+y)+1}\)

\(\Leftrightarrow P\leq \frac{1}{x^2(y+z)+xyz}+\frac{1}{y^2(x+z)+xyz}+\frac{1}{z^2(x+y)+xyz}\)

\(\Leftrightarrow P\leq \frac{1}{x(xy+yz+xz)}+\frac{1}{y(xy+yz+xz)}+\frac{1}{z(xy+yz+xz)}=\frac{xy+yz+xz}{xy+yz+xz}=1\)

Vậy \(P_{\max}=1\Leftrightarrow x=y=z=1\)

1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\) 2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức: \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\) 3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\) 4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước. Tìm GTLN của...
Đọc tiếp

1)Tìm nghiệm nguyên dương của phương trình: \(\left\{{}\begin{matrix}x+y+z=15\\x^3+y^3+z^3=495\end{matrix}\right.\)

2) Cho a,b,c là 3 số thực không âm, tìm GTLN của biểu thức:

\(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)

3) Giải phương trình: \(\sqrt{x-\sqrt{x^2-1}}=\dfrac{9\sqrt{2}}{4}\left(x-1\right)\sqrt{x-1}\)

4) Cho \(x^2+y^2+z^2=k\left(\forall k>0\right)\) cho trước.

Tìm GTLN của \(A=k\left(xy+yz+xz\right)+\dfrac{1}{2}\left[x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\right]\)

5) Chứng minh rằng:

\(\left(3a+2b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{45}{2}\)(Bài này quên điều kiện hay gì đó rồi, ae nếu thấy sai thì fix giùm)

6) Cho a là số thay đổi thỏa mãn: \(-1\le a\le1\)

Tìm GTLN của b sao cho bđt sau đúng:

\(2\sqrt{1-a^4}+\left(b-1\right)\left(\sqrt{1+a^2}-\sqrt{1-a^2}\right)+b-4\le0\)

7) Cho a,b,c dương thỏa mãn \(abc=1\). Chứng minh rằng:

\(\sum\dfrac{a}{\sqrt{8b^3+1}}\ge1\)

8) Cho a,b,c là các số thực dương. Chứng minh rằng:

\(\sum\dfrac{a^2-b^2}{\sqrt{b+c}}\ge0\)

5
15 tháng 12 2017

Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)

Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)

Bài 4: Tương đương giống hôm nọ thôi : V

Bài 5 : Thiếu ĐK thì vứt luôn : V

Bài 7: Tương đương

( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)

Bài 8 : Đây là 1 dạng của BĐT hoán vị

12 tháng 12 2017

@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet

NV
12 tháng 1 2019

1/

\(S=\dfrac{1}{x}+\dfrac{2^2}{y}\ge\dfrac{\left(1+2\right)^2}{x+y}=\dfrac{9}{1}=9\)

\(\Rightarrow S_{min}=9\) khi \(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{2}{y}\\x+y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

2/

Áp dụng BĐT: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Rightarrow\dfrac{\left(x+y\right)^2}{2}-3\left(x+y\right)\le x^2+y^2-3\left(x+y\right)=-4\)

\(\Rightarrow\dfrac{\left(x+y\right)^2}{2}-3\left(x+y\right)+4\le0\Leftrightarrow\left(x+y\right)^2-6\left(x+y\right)+8\le0\)

Đặt \(x+y=a\Rightarrow a^2-6a+8\le0\Rightarrow2\le a\le4\)

\(\Rightarrow2\le x+y\le4\)

\(\Rightarrow S\in\left[2;4\right]\)

14 tháng 1 2019

thank you very muchyeu

NV
28 tháng 2 2019

Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(\Leftrightarrow P=\dfrac{2sin^2a+12sina.cosa}{1+2sina.cosa+2cos^2a}=\dfrac{1-cos2a+6sin2a}{2+sin2a+cos2a}\)

\(\Leftrightarrow P\left(2+sin2a+cos2a\right)=1-cos2a+6sin2a\)

\(\Leftrightarrow\left(P-6\right)sin2a+\left(P+1\right)cos2a=1-2P\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(P-6\right)^2+\left(P+1\right)^2\ge\left(1-2P\right)^2\)

\(\Leftrightarrow P^2+3P-18\le0\Rightarrow-6\le P\le3\)

Vậy \(\left\{{}\begin{matrix}P_{max}=3\\P_{min}=-6\end{matrix}\right.\)

20 tháng 8 2023

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

6 tháng 5 2020

\(3xy=x+y+1\ge3\sqrt[3]{xy}\Rightarrow xy\ge1\)

\(4xy=xy+x+y+1=x\left(y+1\right)+\left(y+1\right)=\left(x+1\right)\left(y+1\right)\)

\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{2xy+x+y}{4\left(xy\right)^2}=\frac{5xy-1}{4\left(xy\right)^2}\)

Xét hiệu: \(P-1=\frac{5xy-1}{4x^2y^2}-1=\frac{\left(4xy-1\right)\left(1-xy\right)}{4x^2y^2}\le0\) với mọi \(xy\ge1\)

Vậy \(P\le1\)hay max P = 1.

Dẫu "=" xảy ra <=> x = y = 1.

6 tháng 5 2020

Áp dụng BĐT Cauchy ta có: \(3xy\ge2\sqrt{xy}+1\Leftrightarrow xy\ge1\)

Áp dụng BĐT Cauchy ta có:

\(P=\frac{1}{x\left(y+1\right)}+\frac{1}{y\left(x+1\right)}=\frac{5xy-1}{xy\left(x+1\right)\left(y+1\right)}=\frac{5xy-1}{4\left(xy\right)^2}\), đặt t=\(\frac{1}{xy}\)

\(f\left(t\right)=\frac{5}{4}t-\frac{1}{4}t^2\)đồng biến trên (0;1] nên f(t) đạt GTLN tại t=1

Vậy GTKN của P=1 đạt được khi x=y=1