Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2=a+a+\frac{b}{4a}+b^2\)
\(\ge a+1-b+\frac{1-a}{4a}+b^2=a+1-b+\frac{1}{4a}-\frac{1}{4}+b^2\)(do \(a+b\ge1\))
\(=\left(a+\frac{1}{4a}\right)+b^2-b+\frac{1}{4}+\frac{1}{2}\)
\(\ge2\sqrt{a\cdot\frac{1}{4a}}+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\)
\(\ge2\cdot\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Dấu = khi \(a=b=\frac{1}{2}\)
Ta có :
\(A=\sqrt{\left(2a-3b\right)^2}+2\sqrt{\left(b-c\right)^2}+\sqrt{\left(2c-3a\right)^2}\)
\(A=\left|2a-3b\right|+2\left|b-c\right|+\left|2c-3a\right|\)
\(\ge3b-2a+2\left(c-b\right)+\left(3a-2c\right)=a+b\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3b-2a,c-b,3a-2c\ge0\\a=b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=1\\1\le c\le\frac{3}{2}\end{cases}}}\)
Vậy Min A = 2 khi a = b = 1 và c \(\in\)\(\left[1,\frac{3}{2}\right]\)
Do \(0< a< 1\Rightarrow b>0\)
\(A=2a+\frac{b}{4a}+b^2=\frac{3a}{2}+\frac{a}{2}+\frac{b}{4a}+b^2\ge\frac{3a}{2}+3\sqrt[3]{\frac{ab^3}{8a}}=\frac{3}{2}\left(a+b\right)\ge\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(a=b=\frac{1}{2}\)