Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
\(2.\) Bạn nghiêm túc gửi câu hỏi nhé!. Mình có lời giải rồi
Áp dụng bất đẳng thức Cosi ta có :
\(4\ge a+b\ge2\sqrt{ab}\Leftrightarrow\sqrt{ab}\le2\Leftrightarrow ab\le4\)
Ta có bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
(Nhân chéo để chứng minh )
Áp dụng :
\(S=\frac{1}{a^2+b^2}+\frac{25}{ab}+ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{49}{2ab}+ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+ab+\frac{16}{ab}+\frac{17}{2ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{ab.\frac{16}{ab}}+\frac{17}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+8+\frac{17}{2.4}=\frac{1}{4}+8+\frac{17}{8}=\frac{83}{8}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)
Xét Q^2=(a^2+b^2)^2/(a-b)^2.Đặt a^2+b^2=x thì (a-b)^2=a^2+b^2-2ab=x-4.Do a>b nên x-4>0.
A^2=x^2/x-4=(x^2-16)/x-4+16/(x-4)=x+4+16/x-4=x-4+16/(x-4)+8>=8+8=16(dùng Cô-si cho 2 số)
suy ra A>=4.
Dấu =xảy ra khi x-4=16(x-4)>>>x-4=4>>>x=8>>>a-b=2 và a+b=2 căn 3 >>>tìm ra a và b
Xét Q^2=(a^2+b^2)^2/(a-b)^2.Đặt a^2+b^2=x thì (a-b)^2=a^2+b^2-2ab=x-4.Do a>b nên x-4>0.
A^2=x^2/x-4=(x^2-16)/x-4+16/(x-4)=x+4+16/x-4=x-4+16/(x-4)+8>=8+8=16(dùng Cô-si cho 2 số)
suy ra A>=4.
Dấu =xảy ra khi x-4=16(x-4)>>>x-4=4>>>x=8>>>a-b=2 và a+b=2 căn 3 >>>tìm ra a và b
k cho mk nha $_$