K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

a)Do bd>0 (do b>0, d>0) nên nếu \(\frac{a}{b}< \frac{c}{d}\) thì ad<bc

b)Ngược lại, nếu ad<bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)

5 tháng 6 2019

Giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)(Vì a, b, c > 0)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ab+bc\)

\(\Leftrightarrow ac< bc\)(Đúng vì c > 0 và a < b)

Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)(đpcm)

Trả lời:

Ta có:

\(\frac{a}{b}< \frac{a+c}{b+c}\)

⇔ a(b + c) < (a + c)b

(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)

⇔ ab + ac < ab + bc

⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)

9 tháng 5 2017

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ab+bc\)

\(\Leftrightarrow ac< bc\)

\(\Rightarrow a< b\) (đúng)

Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\) (đpcm)

9 tháng 5 2017

Ta có giả sử \(\frac{a}{b}< \frac{a+c}{b+c}\) ( a,b,c nguyên dương )
(=) \(a.\left(b+c\right)< b.\left(a+c\right)\)
(=) \(ab+ac< ab+bc\)
(=) \(ac< bc\)( Cùng loại cả 2 vế \(ab\)
(=) \(a< b\)(Loại bỏ 2 vế \(c\))
Điều \(a< b\)đúng vì theo đề bài
Vì điều \(a< b\)đúng 
(=) \(\frac{a}{b}< \frac{a+c}{b+c}\)với a>0,b>0,c>0 và a<b (đpcm)

31 tháng 12 2016

Ai biết cách làm giải hộ đi///

4 tháng 11 2019

Theo tính chất của tỉ lệ thức , ta có :

 \(\frac{a}{a+b+c}< 1\Rightarrow\frac{a}{a+b+b}< \frac{a+d}{a+b+c+d}\left(1\right)\)

Mặt khác , ta có : \(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(3\right)\)

Tương tự , ta có : \(\hept{\begin{cases}\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\left(4\right)\\\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{b+c}{a+b+c+d}\left(5\right)\\\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\left(6\right)\end{cases}}\)

Từ ( 3 ) ; ( 4 ) ; ( 5 ) ; ( 6 ) 

\(\Rightarrow1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)

Vậy...............

P/s : Nếu sai thì bỏ qua nha !

4 tháng 11 2019

Kimetsu bn làm mak mik thấy cứ mắc mắc chỗ nào ý,cách làm thì ko có gì phải bàn.

Ta có:

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\left(1\right)\)

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(2\right)\)

\(\Leftrightarrow a^2+ab+ac+ad< a^2+ad+ab+ad+ca+cd\)

\(\Leftrightarrow cd+da>0\) (  luôn đúng )

\(\left(1\right);\left(2\right)\Rightarrow\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Tương tự rồi cộng lại nha !

13 tháng 4 2017

\(VT=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+c+b}+\frac{c+b}{c+a+b}=2=VT\)

2 tháng 11 2018

a) \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)

b) \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

     \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)

c) \(ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.