Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
UCT nào
Ta chứng minh rằng: \(\dfrac{1}{a}+a+1\ge\dfrac{3}{4}a+2\)
Thật vậy, ta có: \(\dfrac{1}{a}+a+1=\dfrac{3}{4}a+\dfrac{1}{4}a+\dfrac{1}{a}+1\ge\dfrac{3}{4}a+2\sqrt{\dfrac{1}{4}a.\dfrac{1}{a}}+1=\dfrac{3}{4}a+2\)
\(\Rightarrow\left(\dfrac{1}{a}+a+1\right)^3\ge\left(\dfrac{3}{4}a+2\right)^3\)
Tương tự: \(\left(\dfrac{1}{b}+b+1\right)^3\ge\left(\dfrac{3}{4}b+2\right)^3\)
Cộng vế theo vế, áp dụng AM-GMta được:
\(P\ge\left(\dfrac{3}{4}a+2\right)^3+\left(\dfrac{3}{4}b+2\right)^3=\left(\dfrac{3}{4}a+2+\dfrac{3}{4}b+2\right)-3\left(\dfrac{3}{4}a+2\right)\left(\dfrac{3}{4}b+2\right)\left(\dfrac{3}{4}a+2+\dfrac{3}{4}b+2\right)\)
\(P\ge\left[\dfrac{3}{4}\left(a+b\right)+4\right]^3-3.\dfrac{\left(\dfrac{3}{4}a+2+\dfrac{3}{4}b+2\right)^2}{4}.\left[\dfrac{3}{4}\left(a+b\right)+4\right]=85,75\)
GTNN của P là 85,75 khi a=b=2
Lời giải:
Ta có:
\(\text{VT}=a^2+b^2+c^2+(a+b+c)(a^2+b^2+c^2)-(a^3+b^3+c^3)\)
\(\Leftrightarrow \text{VT}=a^2+b^2+c^2+ab(a+b)+bc(b+c)+ac(c+a)\)
\(\Leftrightarrow \text{VT}=a^2+b^2+c^2+(a+b+c)(ab+bc+ac)-3abc\)
\(\Leftrightarrow \text{VT}=(a+b+c)^2+(ab+bc+ac)-3abc\)
Áp dụng BĐT AM-GM:
\(3(ab+bc+ac)=(a=b+c)(ab+bc+ac)\geq 9abc\Rightarrow ab+bc+ac\geq 3abc\)
Do đó \(\text{VT}\geq (a+b+c)^2=9\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Lời giải:
Bài này bạn có thể sử dụng BĐT Holder bậc 3.
BĐT Holder: \((a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)\geq (amx+bny+cpz)^3\)
Cách CM: Sử dụng AM-GM:
\(\frac{a^3}{a^3+b^3+c^3}+\frac{m^3}{m^3+n^3+p^3}+\frac{x^3}{x^3+y^3+z^3}\geq \frac{3amx}{\sqrt[3]{(a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)}}\)
Làm như vậy với các phân thức tương tự và cộng theo vế ta thu được đpcm
(Thực ra vì nó kinh điển rồi nên đi thi không phải cm đâu)
Bây giờ sử dụng BĐT Holder bậc 3 cho bài toán:
\((a^3+b^3+c^3)(a^3+b^3+c^3)(1+1+1)\geq (a^2+b^2+c^2)^3\)
\(\Rightarrow a^3+b^3+c^3\geq 81\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=3\)
P/s: Bạn NHT toàn thích dùng dao mổ trâu để xẻ thịt gà vv
Lời giải:
Áp dụng BĐT AM-GM:
$4abc+4abc+\frac{1}{8a^2}+\frac{1}{8b^2}+\frac{1}{8c^2}\geq 5\sqrt[5]{\frac{1}{32}}=\frac{5}{2}(1)$
Áp dụng BĐT Cauchy_Schwarz:
$\frac{7}{8}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\geq \frac{7}{8}.\frac{9}{a^2+b^2+c^2}\geq \frac{7}{8}.\frac{9}{\frac{3}{4}}=\frac{21}{2}(2)$
Từ $(1);(2)\Rightarrow P\geq 13$
Vậy $P_{\min}=13$ khi $a=b=c=\frac{1}{2}$
1. Không dịch được đề
2. \(\left(m+2\right)x^2-6x+1\le0\) \(\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'=9-\left(m+2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m\ge7\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
3. \(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}=\frac{a^2+b^2}{4ab}+\frac{ab}{a^2+b^2}+\frac{3\left(a^2+b^2\right)}{4ab}\)
\(P\ge2\sqrt{\frac{ab\left(a^2+b^2\right)}{4ab\left(a^2+b^2\right)}}+\frac{6ab}{4ab}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(a=b\)
Lời giải:
Áp dụng bđt AM-GM:
\(a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2\geq 2(ab+b+1)\)
\(\Rightarrow \frac{1}{a^2+2b^2+3}\leq \frac{1}{2(ab+b+1)}\). Tương tự với các phân thức còn lại:
\(\Rightarrow 2\text{VT}\leq \frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=A\)
Dựa vào đk \(abc=1\) dễ thấy \(A=1\).
Cách CM:
\(A=\frac{c}{1+bc+c}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{c+1}{bc+c+1}+\frac{bc}{c+1+bc}=1\) (đpcm)
\(\Rightarrow \text{VT}\leq \frac{1}{2}\)
Dấu bằng xảy ra khi \(a=b=c=1\)