Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng vế với vế, ta có:
\(a^2-20b+81+b^2+18c+9+c^2+6a+100=0\)
\(\Rightarrow\left(a^2+6a+9\right)+\left(b^2-20b+100\right)+\left(c^2+18c+81\right)=0\)
\(\Rightarrow\left(a^2+2.a.3+3^2\right)+\left(b^2-2.b.10+10^2\right)+\left(c^2+2.9.c+9^2\right)=0\)
\(\Rightarrow\left(a+3\right)^2+\left(b-10\right)^2+\left(c+9\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}a+3=0\\b-10=0\\c+9=0\end{cases}\Rightarrow}\hept{\begin{cases}a=-3\\b=10\\c=-9\end{cases}}\)
Khi đó: \(M=\left(a+2\right)^{2017}+\left(b-9\right)^{2018}+\left(c+9\right)^{2018}\)
\(=\left(-3+2\right)^{2017}+\left(10-9\right)^{2018}+\left(-9+9\right)^{2018}\)
\(=-1+1+0=0\)
\(10A=\dfrac{10^{2017}+1+9}{10^{2017}+1}=1+\dfrac{9}{10^{2017}+1}\)
\(10B=\dfrac{10^{2018}+10}{10^{2018}+1}=1+\dfrac{9}{10^{2018}+1}\)
Vì \(10^{2017}+1< 10^{2018}+1\)
nên A>B
Ta có : \(x^4-7x^2+y^2+16=2xy\)
=> \(\left(x^2-8x^2+16\right)+\left(x^2-2xy+y^2\right)=0\)
=> \(\left(x-4\right)^2+\left(x-y\right)^2=0\)
Vì \(\left(x-4\right)^2\ge0 \forall x ,\left(x-y\right)^2 \ge0 \forall x,y \)
=> \(\left(x-4\right)^2+\left(x-y\right)^2\ge0 \forall x,y\)
=> \(\hept{\begin{cases}x-4=0\\x-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=y=4\end{cases}}}\)
Thay vào \(A=4^{2016}.4^{2017}-4^{2017}.4^{2016}+4+4=8\)
Vậy A=8