Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bỏ số 2013 trong biểu thức cần tìm GTLN cho đơn giản!
\(\left(a-2\right)^2+\left(b-1\right)^2=545\)
Đặt \(a-2=x;\text{ }b-1=y\text{ }\Rightarrow x^2+y^2=545.\)
\(P=23\left(x+2\right)+4\left(y+1\right)+2013=23x+4y+50\)
Ta có: \(\left(A^2+B^2\right)\left(X^2+Y^2\right)-\left(AX+BY\right)^2=\left(AY-BX\right)^2\ge0\)
\(\Rightarrow\left(A^2+B^2\right)\left(X^2+Y^2\right)\ge\left(AX+BY\right)^2\)
Dấu bằng xảy ra khi \(AY-BX=0\Leftrightarrow AY=BX\)
Áp dụng: \(\left(23.x+4.y\right)^2\le\left(23^2+4^2\right)\left(x^2+y^2\right)=545.545=545^2\)
\(\Rightarrow23x+4y\le545\)
Dấu bằng xảy ra khi \(\int^{23y=4x}_{23x+4y=545}\Leftrightarrow\int^{x=23}_{y=4}\)
\(\Rightarrow maxP=545+50=595\)
Ta có: \(b=0,25P-2a\) thế ngược lên trên ta được
\(\frac{a^2+\left(0,25P-2a\right)^2}{a-2\left(0,25P-2a\right)}=2\)
\(\Leftrightarrow80a^2-a\left(16P+160\right)+P^2+16P=0\)
Để PT có nghiệm thì:
\(\Delta'\ge0\)
Làm tiếp nhé
Từ \(\frac{a^2+b^2}{a-2b}=2\Rightarrow a^2+b^2=2\left(a-2b\right)\)
\(\Leftrightarrow a^2+b^2=2a-4b\)
\(\Leftrightarrow a^2+b^2+4b=2a\)
\(\Leftrightarrow a.a+b.b+4b=2.a\)
\(\Leftrightarrow a.a+b\left(b+4\right)=2.a\)
\(\Leftrightarrow2.a-a.a=b\left(b+4\right)\)
\(\Leftrightarrow\frac{a}{b}=\frac{b+4}{2-a}\)
Mà muốn P lớn nhất thì a,b phải lớn nhất \(\Rightarrow a=b+4;b=2-a\)
\(\Leftrightarrow a+b=2\Leftrightarrow b+4+b=2\Leftrightarrow2b=-2\Rightarrow b=-1;a=3\)
\(\Rightarrow P=8a+4b=24-4=20\)
mình đánh nhầm sửa lại nhé
maxp=2068\(\Leftrightarrow\)\(\Leftrightarrow\Leftrightarrow\)\(\Leftrightarrow\) a=25;b=5
1)maxP=2068\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) khi và chỉ khi a=25 ; b=5
ta có:a^2+b^2=4a+2b+540
<=>(a-2)^2+(b-1)^2=545
ta có:P=23a+4b+2013=23(a-2)+4(b-1)+2063
áp dụng bdt Bu-nhi-a-cốp-ski ta có:
(23(a-2)+4(b-1))^2nho hơn hoặc bằng (23^2+4^2)((a-2)^2+(b-1)^2)=545.545=545^2
=>23(a-2)+4(b-1) nhỏ hơn hoặc bằng 545
=>P nhỏ hơn hoặc bằng 545+2063=2608.dấu bằng xảy ra khi a=25;b=5
vậy maxP=2608 tại a=25;b=5
một lúc nữa sẽ có chi tiết