Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a+b=1\Rightarrow2\sqrt{ab}\le1\Rightarrow\sqrt{ab}\le\frac{1}{2}\Rightarrow ab\le\frac{1}{4}\)
Lại có: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^2-ab+b^2=\left(a+b\right)^2-3ab\ge1-\frac{3}{4}=\frac{1}{4}\)
Dấu "=" xảy ra khi a = b = \(\frac{1}{2}\)
Có b=1-a. Thay vào được
\(a^3+\left(1-a\right)^3=a^3+1-3a+3a^2-a^3=3a^2-3a+\frac{3}{4}+\frac{1}{4}=3\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)
Mà \(a^3+b^3=a-b\)
\(\Rightarrow a^3-b^3< a-b\)
\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)
\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)
\(\Leftrightarrow a^2+ab+b^2< 1\)
\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)
b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath
Lời giải:
Từ điều kiện đề bài suy ra:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0$
$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$
$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$
$\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0$
$\Rightarrow (a+b)(c+a)(c+b)=0$
$\Rightarrow (1-c)(1-b)(1-a)=0$
$\Rightarrow 1-c=0$ hoặc $1-b=0$ hoặc $1-a=0$
$\Leftrightarrow a=1$ hoặc $b=1$ hoặc $c=1$ (đpcm)
(a+b)(a2+ab+b2)+ab
=1(a2+2ab+b2-ab)+ab
=((a+b)2-ab)+ab
=1-ab+ab
=1
\(a^3+b^3+ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab\)
\(=a^2+b^2\)
\(=a^2+b^2+2ab-2ab\)
\(=\left(a+b\right)^2-2ab\)
\(=1-2ab\)
Ta có: \(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1^2\)
\(a^2+2ab+b^2=1\)
Áp dụng BĐT AM-GM ta có:
\(a^2+2ab+b^2\ge2ab+2.\sqrt{a^2b^2}=2ab+2ab=4ab\)
\(\Leftrightarrow1\ge4ab\)
\(\Leftrightarrow\frac{1}{4}\ge ab\)
\(\Rightarrow a^3+b^3+ab=1-2ab\ge1-2.\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}\)
đpcm
P/S: Nếu bạn chưa học AM-GM thì chứng minh bài toán phụ
\(a^2+b^2\ge2ab\)rồi áp dụng nhé~
Áp dụng BĐT cho 2 số dương:
\(\frac{1}{\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Xét: c + 1 = c + a + b + c
\(\frac{ab}{\left(c+1\right)}\le\frac{ab}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+c\right)}\right]\)
Tương tự:
\(\frac{bc}{\left(a+1\right)}\le\frac{bc}{4}.\left[\frac{1}{\left(a+c\right)}+\frac{1}{\left(b+a\right)}\right]\)
\(\frac{ca}{\left(b+1\right)}\le\frac{ac}{4}.\left[\frac{1}{\left(a+b\right)}+\frac{1}{\left(c+b\right)}\right]\)
Cộng lại:
\(\frac{ac}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{\left(b+1\right)}\le\frac{1}{4}\left\{\frac{ab}{\left(a+c\right)}+\frac{ab}{\left(b+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{bc}{\left(a+c\right)}+\frac{ac}{\left(a+b\right)}\right\}\)
Cộng lại + rút gọn mẫu số
\(\frac{ab}{\left(c+1\right)}+\frac{bc}{\left(a+1\right)}+\frac{ca}{b+1}\le\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu '=' xảy ra khi a = b = c
P/s: Sai đâu bạn sửa nhé!