Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhóm vào , ta có :
\(\left(a+1\right)^3+\left(b+1\right)^3+a+b+1+1=0\)
Đến đây áp dụng HĐT là ra
\(a^3+3a^2+3a+1+b^3+3b^2+3b+1+a+b+2=0\)
\(\Leftrightarrow\left(a+1\right)^3+\left(b+1\right)^3+a+b+2=0\)
\(\Leftrightarrow\left(a+b+2\right)\left(\left(a+1\right)^2-\left(a+1\right)\left(b+1\right)+\left(b+1\right)^2\right)+a+b+2=0\)
\(\Leftrightarrow\left(a+b+2\right)\left(\left(a+1\right)^2-\left(a+1\right)\left(b+1\right)+\dfrac{\left(b+1\right)^2}{4}+\dfrac{3\left(b+1\right)^2}{4}+1\right)=0\)
\(\Leftrightarrow\left(a+b+2\right)\left(\left(a+1-\dfrac{b+1}{2}\right)^2+\dfrac{3\left(b+1\right)^2}{4}+1\right)=0\)
\(\Leftrightarrow a+b+2=0\) (ngoặc to phía sau luôn dương)
\(\Leftrightarrow a+b=-2\)
\(\Rightarrow M=2018\left(a+b\right)^2=2018.\left(-2\right)^2=8072\)
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1