K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

\(x^3+3x^2+2x=0\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1=-a\end{matrix}\right.\)

Vì 2 pt đã có nghiệm chung là \(-1\Rightarrow\) nghiệm của pt \(\left(x+1\right)^2=-a\) phải khác \(0,2\)

\(\Rightarrow a\ne-1;-9\)

(cách mình là vậy chứ mình cũng ko chắc là có đúng ko nữa)

 

4 tháng 6 2021

sửa lại khúc nghiệm của pt \(\left(x+1\right)^2-a\) phải khác \(0,-2\)và \(a\ne-1\)

lại giùm mình,mình quên dấu - nên a phía dưới hơi bị lỗi

 

 

NV
8 tháng 4 2019

\(x^3+3x^2+2x=0\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

\(\left(x+1\right)\left(x^2+2x+1+a\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+1+a=0\left(1\right)\end{matrix}\right.\)

Do 2 pt luôn có nghiệm chung \(x=-1\) nên để chúng có nghiệm chung duy nhất thì (1) vô nghiệm hoặc (1) có nghiệm khác 0 và khác -2

\(\Rightarrow\left[{}\begin{matrix}\Delta'=1-\left(1+a\right)< 0\\0+0.2+1+a\ne0\\\left(-2\right)^2+2.\left(-2\right)+1+a\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a>0\\a\ne-1\end{matrix}\right.\)

Nhiều thế, chắc phải đưa ra đáp thôi

14 tháng 10 2019

ta có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)\)

\(\Delta=4m^2-8m+9\)

\(\Delta=\left(2m-2\right)^2+5>0\)

do dó phương trình đã cho có 2 nghiệm phân biệt x1 ; x2

áp dụng định lí Vi-ét ta có: \(\hept{\begin{cases}s=x_1+x_2=2m-1\\p=x_1.x_2=m-2\end{cases}}\)

theo bài ra:   x13  +  x23 = 27 

<=> (x1 + x2 )3 - 3x1x2  (x1+x2)  - 27=0   <=>  (2m-1)3 - 3(m-2) ( 2m-1) -27 =0

<=>  8m3 -12m2 +6m-1 - 6m2 +15m - 6 - 27 =0

<=> 8m3 - 18m2 + 21m - 34 =0 <=>  (m-2)(8m2 -2m+17) = 0 

\(\Rightarrow\hept{\begin{cases}m-2=0\\8m^2-2m+17=0\left(PTVN\right)\end{cases}}\) <=> m=2

Vậy m=2 thỏa mãn đề bài

( chú giải: PTVN là phương trình vô nghiệm)

4 tháng 7 2018

ta có : \(x^3+3x^2+2x=0\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

mà phương trình \(\left(x+1\right)\left(x^2+2x+1+a\right)=0\) đã có 1 nghiệm \(x=-1\) là nghiệm chung của phương trình \(x^3+3x^2+2x=0\) rồi

\(\Rightarrow\) để hai phương trình chỉ có 1 nghiệm chung thì khi \(x=0;x=-2\) thì \(x^2+2x+1+a\ne0\)

thế \(x=0\)\(x=-2\) vào phương trình ta có : \(a\ne-1\)

vậy \(a\ne-1\) thì 2 phương trình chỉ có 1 nghiệm chung .

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn