Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình
hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)
Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1
b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)
\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)
Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)
\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)
Vậy với \(m=0\)thỏa mãn yêu cầu bài toán
a. Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow2^2-\left(m+1\right)\ge0\Leftrightarrow m\le3\)
b. Theo Viet \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=m+1\end{cases}}\)
Lại có \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)
Theo đề bài: 14 - 2m = 10 => m = 2. (TM)
a) PT có nghiệm thì \(\Delta=4^2-4\left(m+1\right)\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow4m\le12\Leftrightarrow m\le4\)
b) theo hệ thức viet ta có \(\hept{\begin{cases}x_1+x_2=-4\\x_1.x_2=m+1\end{cases}}\)
Có \(x_1^2+x^2_2=10\Leftrightarrow x_1^2+x^2_2+2x_1.x_2=10+2x_1.x_2\Leftrightarrow\left(x_1+x_2\right)^2=10+m+1\)
\(\left(-4\right)^2=11+m\Leftrightarrow16=11+m\Leftrightarrow m=5\)
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
\(x^2-2mx+\left(m-1\right)^3=0\left(1\right)\)
PT (1) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=m^2-\left(m-1\right)^3>0\)(*)
Giả sử phương trình có 2 nghiệm phân biệt là u, u2 thì theo Vi-et ta có:
\(\hept{\begin{cases}u+u^2=2m\\u\cdot u^2=\left(m-1\right)^2\end{cases}}\)(**)
(**)\(\Leftrightarrow\hept{\begin{cases}u+u^2=2m\\u^3=\left(m-1\right)^3\end{cases}\Leftrightarrow\hept{\begin{cases}u+u^2=2m\\u=m-1\end{cases}\Leftrightarrow}\hept{\begin{cases}m-1+\left(m-1\right)^2=2m\\u=m-1\end{cases}\Leftrightarrow}\hept{\begin{cases}m^2-3m=0\\u=m-1\end{cases}}}\)
PT \(m^2-3m=0\Leftrightarrow m\left(m-3\right)=0\Leftrightarrow m_1=0;m_2=3\left(tmđk\right)\)
Vậy m=0; m=3 là 2 giá trị cần tìm
Để pt có 2 nghiệm phân biệt thì \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2>0\)
\(\Rightarrow\)\(m\ne1\)
\(\Rightarrow\)\(\hept{\begin{cases}x_1=\frac{m-\sqrt{\left(m-1\right)^2}}{2m-1}=\frac{m-\left|m-1\right|}{2m-1}\\x_2=\frac{m+\sqrt{\left(m-1\right)^2}}{2m-1}=\frac{m+\left|m-1\right|}{2m-1}\end{cases}}\)
Với \(m>1\) thì \(\hept{\begin{cases}x_1=\frac{m-m+1}{2m-1}=\frac{1}{2m-1}\\x_2=\frac{m+m-1}{2m-1}=1\end{cases}}\) (1)
Với \(m< 1\) thì \(\hept{\begin{cases}x_1=\frac{m-\left(1-m\right)}{2m-1}=1\\x_2=\frac{m+\left(1-m\right)}{2m-1}=\frac{1}{2m-1}\end{cases}}\) (2)
Từ (1) và (2) ta thấy với mọi giá trị m thì pt có ít nhất một nghiệm không thoả mãn điều cần chứng minh, hay pt không có nghiệm thuộc (-1;0)