K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Gỉai:

Ta có: 

Mẫu thức chung của hai phân thức: \(7\left(z-x\right)^4\left(x-y\right)\) và \(11\left(x-y\right)^8\)

-BCNN: \(\left(7,11\right)=77\)

-Số mũ cao nhất của cơ số: \(\left(z-x\right)\) là 4 ta chọn nhân tử \(\left(z-x\right)^4\)

-Số mũ cao nhất của luỹ thừa cơ số: \(\left(x-y\right)\) là 8 ta chọn nhân tử \(\left(x-y\right)^8\)

Vậy mẫu thức chung cần tìm của hai phân thức là: \(77\left(z-x\right)^4\left(x-y^8\right)\)

Vậy a = 77, b= 4, c= 8

12 tháng 11 2019

Hình như là tìm Mẫu thức chung không phải quy đồng ghi sai à bạn :)?

29 tháng 11 2016

Phân tích mẫu thức thành nhân tử

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

7 tháng 7 2016

\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)

\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=0\)

7 tháng 7 2016

giỏi quá . Cho hỏi anh học lớp mấy

8 tháng 10 2018

\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}+\frac{z^2-xy}{\left(x+z\right)\left(y+z\right)}\)

\(=\frac{\left(x^2-yz\right).\left(y+z\right)}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}+\frac{\left(y^2-xz\right).\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}+\frac{\left(z^2-xy\right).\left(x+y\right)}{\left(x+z\right)\left(y+z\right)\left(x+y\right)}\)

\(=\frac{x^2y-y^2z+x^2z-yz^2+y^2x-x^2z+zy^2-xz^2+z^2x-x^2y+yz^2-xy^2}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

\(=\frac{0}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)

\(=0\)\(\left(\text{Đ}K:x+y,y+z,z+x\ne0\right)\)

Tham khảo nhé~

22 tháng 10 2016

Bài 1 :

a) \(x^8+x+1\)

\(=x^8-x^2+\left(x^2+x+1\right)\)

\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5+x^2\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=\left(x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^6-x^5+x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^6-x^5+x^4-x^2+1\right)\left(x^2+x+1\right)\)

b) \(64x^4+y^4\)

\(=\left(8x^2\right)^2+\left(y^2\right)^2+2.8x^2.y^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)

2 tháng 3 2017

Câu 1: Đặt a/x là m; b/y là n; c/z là p, ta có: m + n + p = 2; 1/m + 1/n + 1/p = 0. Tìm m2 + n2 + p2 ?

Từ 1/m + 1/n + 1/p = 0

=> mnp(1/m + 1/n + 1/p) = 0
<=> mn + np + mp = 0

Mặt khác, ta có (m + n + p)2 = m2 + n2 + p2 + 2(mp + np + mp) = 4

Mà mn + np + mp = 0 => m2 + n2 + p2 + 0 = 4

Trả lời: Vậy a2/x2 + b2/y2 + c2/z2 = 4

3 tháng 3 2017

Cảm ơn bạn nha !

13 tháng 11 2018

Ta có: x+ y3 + z3 = 3xyz

x3 + y3 + z3 - 3xyz = 0

x3 + 3x2y + 3xy2 + y+ z3 - 3xy(x + y) - 3xyz = 0

(x + y)3 + z2 - 3xy(x + y + z) = 0

(x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0

(x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z) = 0

(x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy) = 0

(x + y + z)(x2 + y2 + z2 - xz - yz - xy) = 0

=> x + y + z = 0 hoặc x2 + y2 + z2 - xz - yz - xy = 0

+) Với x + y + z = 0 

<=> x + y = -z, x + z = -y, y + z = -x

Thay x + y = -z, x + z = -y, y + z = -x vào P, ta có:

\(P=\frac{xyz}{\left(-z\right)\left(-x\right)\left(-y\right)}=-1\)

+) Với x2 + y2 + z2 - xz - yz - xy = 0

=> 2x2 + 2y2 + 2z2 - 2xz - 2yz - 2xy = 0

=> (x2 - 2xy + y2) + (x2 - 2xz + z2) + (y2 - 2yz + z2) = 0

=> (x - y)2 + (x - z)2 + (y - z)2 = 0

=> (x - y)2 = 0 và (x - z)2 = 0 và (y - z)2 = 0

=> x = y và x = z và y = z

=> x = y = z

Thay x = y = z vào P, ta có:

\(P=\frac{xxx}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{x^3}{\left(2x\right)^3}=\frac{x^3}{8x^3}=\frac{1}{8}\)