Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 11.12.
Kẻ đường cao \(AH,BK\).
Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).
Đặt \(AB=AH=x\left(cm\right),x>0\).
Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)
Xét tam giác \(AHD\)vuông tại \(H\):
\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore)
Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)
Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)
\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))
Vậy đường cao của hình thang là \(2\sqrt{5}cm\).
Câu 11.11.
Kẻ \(AE\perp AC,E\in CD\).
Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành.
Suy ra \(AE=BD=15\left(cm\right)\).
Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AC=20\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),
gọi cạnh của bìa đó là : a
vì S = a2 => \(\sqrt{S}=a\)
=> a = 8
chu vi la 4a=8.4 =32
vì 8 x 8 = 64 nên cạnh của hình vuông là
64:8=8(cm)
Chu vi mảnh bìa đó là;
8x4= 32(m)
Đáp số : 32m
Tick đúng nhé
88 m
ai tk mk
mk nhất định sẽ tk lại người đó
hứa luôn
thank nhiều
Đáy phải là :
90 x 2 : 10 = 18 ( m )
Khi mở rộng đáy tam giác trái là :
22 - 18 = 4 ( m )
Diện tích mở rộng phần đất bên trái là :
4 x 10 : 2 = 20 ( m2 )
Diện tích phần được mở rộng là :
20 + 90 = 110 ( m2 )
Diện tích thửa ruộng là :
110 x 7 = 770 ( m2 )
Tổng 2 đáy là :
770 x 2 : 10 = 154 ( m )
Đáy lớn hình thang là :
( 154 + 22 ) : 2 = 88 ( m )
Đáp số : 88 m
Sửa đề: Đáy nhỏ bằng nửa đáy lớn và bằng độ dài hai cạnh bên
AB=CD/2=5cm
BD vuông góc BC
=>góc BDC+góc BCD=90 độ
AD=BC=AB=5cm
AB=AD
=>góc ABD=góc ADB
=>góc ADB=góc BDC
=>DB là phân giác của góc ADC
góc BDC+góc BCD=90 độ
=>1/2*góc BCD+góc BCD=90 độ
=>góc BCD=60 độ
=>góc BDC=30 độ
Xét ΔBDC vuông tại B có BD^2+BC^2=CD^2
=>BD=5*căn 3(cm)
Kẻ BH vuông góc CD
=>BH=BD*BC/CD=5/2*căn 3(cm)
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath