Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔBAC
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
P là trung điểm của GB
Q là trung điểm của GC
Do đó: PQ là đường trung bình của ΔGBC
Suy ra: PQ//BC và \(PQ=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra NM//PQ và NM=PQ
hay MNPQ là hình bình hành
a)Xet hinh binh hanh ABCD co:
AB = DC va AB song song voi DC (t/c hinh binh hanh)
ma M la trung diem AB, N la trung diem DC(gt)
=>AM=DN va AM song song voi DN
=>AMND la hinh binh hanh (t/g co 1 cap canh doi song song va bang nhau)
Ta co: AB=2AD(gt)
ma M la trung diem AD(gt)
=>AM=AD
=>AMND la hinh thoi (hinh binh hanh co 2 canh ke bang nhau)
TK
a, Gọi O là giao điểm hai đường chéo của hình bình hành ABCD
=> O là trung điểm của AC và BD
hay OA = OC và OD = OB
Xét tam giác ADC có:
AF là đường trung tuyến ( F là trung điểm của DC)
DO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến này cắt nhau tại M
=> M là trọng tâm của tam giác ADC
Tương tự, xét tam giác ABC có:
AE là đường trung tuyến ( E là trung điểm của BC)
BO là đường trung tuyến ( OA=OC)
Hai đường trung tuyến cắt nhau tại N
=> N là trọng tâm của tam giác ABC
b,
Nối M với C ; N với C
Có OM = 1313 OD
ON = 1313 OB
mà OD = OB (cm câu a)
=> OM = ON
Xét tứ giác ANCM có:
OM = ON (cmt)
OA = OC (cm câu a)
=> tứ giác ANCM là hình bình hành
=> AM//CN hay AF//CN
Xét ΔΔ DNC có:
DF=CF (gt)
MF//CN (AF//CN)
=> DM = MN (1)
Gọi I là giao điểm của EF và MC
Xét ΔΔ BCD có:
DF = CF (gt)
BE = CE (gt)
=> EF là đường trung bình của ΔΔ BCD
=> EF//BD
hay EI//BD
Xét ΔΔ BMC có:
EI//BM ( M∈∈ BD)
BE = CE (gt)
=> MN = NB (2)
Hầy chỗ này bạn viết đề sai nữa rồi! phải là DM = MN = NB hoặc ngược lại
Từ (1) và (2) suy ra :
DM = MN =NB (đpcm)
Ta có: \(\widehat{HAF}+\widehat{FAB}+\widehat{DAB}+\widehat{DAH}=360^o\)
Mà \(\widehat{FAB}=\widehat{DAH}=90^O\)
\(\Rightarrow\widehat{HAF}+\widehat{DAB}=180^o\)
Ta lại có: \(\widehat{ADC}+\widehat{DAB}=180^o\) ( 2 góc trong cùng phía nên kề bù với nhau )
\(\Rightarrow\widehat{HAF}=\widehat{ADC}\)
Xét \(\Delta HAF\) và \(\Delta ADC\) có:
\(HA=HD\left(gt\right)\)
\(\widehat{HAF}=\widehat{ADC}\left(CMT\right)\)
\(AF=DC\left(gt\right)\)
Vậy \(\Delta HAF\) \(=\) \(\Delta ADC\) \(\left(c.g.c\right)\)
\(\Rightarrow AC=FH\) ( 2 cạnh tưng ứng )
b) Ta có: \(\widehat{CBE}=\widehat{ABC}+90^o\)
\(\widehat{GDC}=\widehat{ADC}+90^o\)
Mà \(\widehat{ADC}=\widehat{ABC}\)
\(\Rightarrow\widehat{CBE}=\widehat{GDC}\)
Xét \(\Delta CBE\) và \(\Delta GDC\) ta có:
\(EB=CD\left(gt\right)\)
\(\widehat{CBE}=\widehat{GDC}\left(CMT\right)\)
\(CB=GD\left(gt\right)\)
Vậy \(\Delta CBE=\Delta GDC\left(c.g.c\right)\)
\(\Rightarrow CE=GC\) ( 2 cạnh tương ứng )
\(\Rightarrow\Delta CEG\) cân tại \(G\)
a) Ta biết rằng trong hình bình hành ABCD, các đường chéo chia nhau đều và cắt nhau ở trung điểm.
Vì vậy, ta có AC = FH.
b) Vì ABFE là hình vuông, nên các cạnh AB và FE là song song và bằng nhau.
Tương tự, vì ADGH là hình vuông, nên các cạnh AD và GH cũng là song song và bằng nhau. Do đó, ta có AB || FE và AD || GH. Vì AC = FH (chứng minh ở câu a), và AB || FE, AD || GH,
nên theo tính chất của các đường song song, ta có AC || FH. Do đó, AC vuông góc với FH.
c) Ta biết rằng trong hình vuông, các đường chéo chia nhau đều và cắt nhau vuông góc.
Vì vậy, ta có AG ⊥ CE và CG ⊥ AE. Vì AG ⊥ CE, nên AGC là tam giác vuông tại G.
Vì CG ⊥ AE, nên CEG là tam giác vuông tại C. Vì AG = GC (vì AGC là tam giác vuông cân), nên ta cũng có CG = GC.
Do đó, ta có CEG là tam giác vuông cân.
Vậy, ta đã chứng minh được a), b), c) trong đề bài.