Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chú ý: câu a kẻ luôn tia Oa'' là tia đối của Oa!
O a b c a''
a/ Ta có: \(\widehat{a''Ob}+\widehat{bOa}=180\) độ (kề bù)
\(\Rightarrow\widehat{a''Ob}+120=180\)
\(\Rightarrow\widehat{a''Ob}=180-120=60\)độ (1)
Ta lại có: \(\widehat{a''Oc}+\widehat{cOa}=180\)độ (kề bù)
\(\Rightarrow\widehat{a''Oc}+120=180\)
\(\Rightarrow\widehat{a''Oc}=180-120=60\)độ (2)
Từ (1),(2) ta có: \(\widehat{bOc}=120\)độ
Vậy: \(\widehat{aOb}=\widehat{aOc}=\widehat{bOc}\left(đpcm\right)\)
b) Vì đã tính ở câu a hết trơn nên câu này nhẹ nhàng lắm.
\(Oa''\)là phân giác \(\widehat{bOc}\)vì
+ \(Oa\)nằm giữa 2 tia \(Ob;Oc\)
+ \(\widehat{a''Ob}=\widehat{a''Oc}=\frac{\widehat{bOc}}{2}\)
Ps: Check lại coi có sai sót gì ko nha
a) tia OB nằm giữa hai tia OC ; ÒA vì : - Vì ỐC ;OB cùng nằm trên nửa mặt phẩm có bờ chứa tia OA
- góc AOB < góc AOC
nen AOB^ + BOC^ = AOC^
ta có : 30 độ + BOC^ = 75 độ
BOC^ = 75 độ - 30 độ = 45 độ
c) vì BÓC^ và COD^ là hai góc kề bù nên tổng số đo là 180 độ
ta có : BOC^ +COD^ = 180 độ
=> 45 độ + COD^ = 180 độ
COD^ = 180 độ - 45 độ = 135 độ
Bài làm
a) Vì \(\widehat{AOB}=\widehat{BOC}\)( gt )
=> OB là tia phân giác của góc AOC.
Vì \(\widehat{BOC}=\widehat{COD}\)( gt )
=> OC là tia phân giác của góc BOD.
b) Nếu OM là tia phân giác của góc AOD
Thì: \(\widehat{DOM}=\widehat{MOA}\)
Mà \(\widehat{DOM}+\widehat{MOA}=120^0\)
=> \(\widehat{DOM}=\widehat{MOA}=\frac{120^0}{2}=60^0\)
Ta có: \(\widehat{AOB}=\widehat{BOC}=\widehat{COD}=\frac{120^0}{3}=40^0\)
Lại có: \(\widehat{AOB}+\widehat{BOM}=\widehat{MOA}\)
Hay \(40^0+\widehat{BOM}=60^0\)
\(\Rightarrow\widehat{BOM}=60^0-40^0=20^0\) (3)
Mặt khác: \(\widehat{COD}+\widehat{MOC}=\widehat{MOD}\)
hay \(40^0+\widehat{MOC}=60^0\)
\(\Rightarrow\widehat{MOC}=60^0-40^0=20^0\) (4)
Từ (3) và (4), ta được: \(\widehat{BOM}=\widehat{MOC}\left(=20^0\right)\)
=> OM là tia phân giác của góc BOC.
Vậy nếu OM là tia phân giác của góc AOD thì OM có là tia phân giác của góc BOC.
# Học tốt #