\(\left(C_1\right):x^2+y^2-4x+2y-4=0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

Vậy ta được \(M\left(-1;1\right)\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

30 tháng 3 2017

Gọi R là bán kính của đường tròn (C)

(C) và C1 tiếp xúc ngoài với nhau, cho ta:

MF1 = R1+ R (1)

(C) và C2 tiếp xúc ngoài với nhau, cho ta:

MF2 = R2 – R (2)

Từ (1) VÀ (2) ta được

MF1 + MF2 = R1+ R2= R không đổi

Điểm M có tổng các khoảng cách MF1 + MF2 đến hai điểm cố định F1 và F2 bằng một độ dài không đổi R1+ R2

Vậy tập hợp điểm M là đường elip, có các tiêu điểm F1 và F2 và có tiêu cực :

F1 .F2 = R1+ R2

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

\(C\left(M;R\right)\) đi qua \(F_2\Rightarrow MF_2=R\) (1)

\(C\left(M;R\right)\) tiếp xúc trong với \(C_1\left(F_1;2a\right)\Rightarrow MF_1=2a-R\) (2)

(1) + (2) cho \(MF_1+MF_2=2a\)

Vậy M di động trên elip (E) có hai tiêu điểm là \(F_1,F_2\) và trục lớn \(2a\)

30 tháng 3 2017

a) f(x) = (x+2)(x-1)

f(x) > 0 với x < -2 hoặc x > 1

f(x) ≤ 0 với -2 ≤ x ≤ 1

b) y = 2x (x + 2) = 2(x+1)2 – 2

Bảng biến thiên:

Hàm số : y = \(\left(x+2\right)\left(x+1\right)=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)

Bảng biến thiên :

Đồ thị (C1) và (C2)

Hoành độ các giao điểm A và B của (C1) và (C2) là nghiệm của phương trình f(x) = 0 ⇔ x1 = -2, x2 = 1

⇔ A(-2, 0) , B(1, 6)

c) Giải hệ phương trình

\(\left\{{}\begin{matrix}\dfrac{ac-b^2}{4a}\\a\left(-2\right)^2+b\left(-2\right)+c=0\\a\left(1\right)^2+b\left(1\right)+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2,b=0,c=8\\a=-\dfrac{2}{9},b=\dfrac{16}{9},c=\dfrac{40}{9}\end{matrix}\right.\)

30 tháng 3 2017

a) Ta tìm bán kính R2 = IM2 => R2 = IM = (2 + 2)2 + (-3 -32) = 52

Phương trình đường tròn (C): (x +2)2 + (y – 3)2 =52

b) Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:

d(I; d) = R

Ta có : R = d(I; d) = \(=\)

Phương trình đường tròn cần tìm là:

(x +1)2 + (y – 2)2 = =>( x +1)2 + (y – 2)2 =

<=> 5x2 + 5y2 +10x – 20y +21 = 0

c) Tâm I là trung điểm của AB, có tọa độ :

x = \(\dfrac{1+7}{2}\) = 4; y = \(\dfrac{1+5}{2}\) = 3 => I(4; 3)

AB = \(2\sqrt{13}\) => R =\(\sqrt{13}\)

=> (x -4 )2 + (y – 3)2 =13