\(B\in\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

b)ME.MO = MA2 (hệ thức lượng trong MAO vuông)

MF.MO’ = MA2 (hệ thức lượng trong MAO’ vuông)

Suy ra ME.MO = MF.MO’

c)Đường tròn có đường kính BC có tâm M, bán kính MA.OO’ vuông góc với MA tại A nên là tiếp tuyến của đường tròn (M).

d)Hình b

Để học tốt Toán 9 | Giải bài tập Toán 9

Gọi I là trung điểm của OO’, I là tâm của đường tròn có đường kính OO’, IM là bán kính (vì MI là trung tuyến ứng với cạnh huyền của MOO’. IM là đường trung bình của hình thang OBCO’ nên IM // OB // O’C. Do đó IM ⊥ BC.

BC vuông góc với IM tại M nên BC là tiếp tuyến của đường tròn (I).

12 tháng 6 2017

tại sao MA lại vuông góc vs OO'?

31 tháng 7 2015

Mừng quá. Xong hết rồi. Hơn nửa tiếng bây giờ cũng được đền đáp =))

a) MB = MC (=MA) (giao điểm 2 tiếp tuyến cách đều tiếp điểm)

b) MA = MB = MC => T/g ABC vuông tại A => ^A = 90

T/g OAB cân tại O, có OM là đ/phân giác nên OM cũng là đ cao hay ^ANM = 90

Tương tự, ^APM = 90

=> đpcm

c) MO'/MO = O'C/BM (CMO' ~ BOM) = O'C/CM = CP/MP (CMO' ~ PMC) = MN/MP (PMC = NBM góc vuông - cạnh huyền - góc nhọn so le trong)

=> đpcm

d) Trong t/g vuông OMO' có MA là đường cao, OM^2 = OA.OO' <=> OM = 20 => BM = 12 (Pytago) => BC = 24

e) Dùng ta lét tìm ra OE, EC, còn OC tìm theo pytago trong t/g vuông OBC

f) ABKC là hình chữ nhật => AK cắt BC tại trung điểm M => đpcm

25 tháng 4 2017

Hướng dẫn giải:

a) Theo tính chất của hai tiếp tuyến cắt nhau ta có IA=IB=IC=12BCIA=IB=IC=12BC.

Do đó tam giác ABC vuông tại A

⇒ˆBAC=90∘⇒BAC^=90∘.

b) Ta có ˆI1=ˆI2;ˆI3=ˆI4I^1=I^2;I^3=I^4 (tính chất hai tiếp tuyến cắt nhau).

Do đó ˆOIO′=90∘OIO′^=90∘ (hai tia phân giác của hai góc kề bù).

c) Ta có AI⊥OO′AI⊥OO′.

Xét tam giác OIO' vuông tại I, ta có:

IA2=OA⋅O′A=9⋅4=36⇒IA=6.IA2=OA⋅O′A=9⋅4=36⇒IA=6.

Do đó BC=12cm.

Nhận xét. Câu a), b) chỉ là gợi ý để làm câu c). Đối với những bài toán có hai đường tròn tiếp xúc, ta thường vẽ thêm tiếp tuyến chung tại tiếp điểm để xuất hiện yếu tố trung gian giúp cho việc tính toán hoặc chứng minh được thuận lợi.

25 tháng 4 2017

a) Theo tính chất của hai tiếp tuyến cắt nhau ta có IA=IB=IC=12BCIA=IB=IC=12BC.

Do đó tam giác ABC vuông tại A

ˆBAC=90⇒BAC^=90∘.

b) Ta có ˆI1=ˆI2;ˆI3=ˆI4I^1=I^2;I^3=I^4 (tính chất hai tiếp tuyến cắt nhau).

Do đó ˆOIO=90OIO′^=90∘ (hai tia phân giác của hai góc kề bù).

c) Ta có AIOOAI⊥OO′.

Xét tam giác OIO' vuông tại I, ta có:

IA2=OAOA=94=36IA=6.IA2=OA⋅O′A=9⋅4=36⇒IA=6.

Do đó BC=12cm.

Nhận xét. Câu a), b) chỉ là gợi ý để làm câu c). Đối với những bài toán có hai đường tròn tiếp xúc, ta thường vẽ thêm tiếp tuyến chung tại tiếp điểm để xuất hiện yếu tố trung gian giúp cho việc tính toán hoặc chứng minh được thuận lợi.

9 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mà OB ⊥ BC ⇒ IM ⊥ BC

Ta có:

IM ⊥ BC

BC ⋂ (I; IM) = {M}

Suy ra, BC là tiếp tuyến của đường tròn tâm I, bán kính IM

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0