Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O O' A B H C F D K G E 1 2 3 4
a) Xét đường tròn (O';R) có: Đường kính OC và điểm A nằm trên cung OC => ^OAC=900
=> OA vuông góc với AC. Mà OA là bán kính của (O) => AC là tiếp tuyến của (O)
Ta thấy: 2 đường tròn (O) và (O') có cùng bán kính R => OA=OB=O'A=O'B= R
=> Tứ giác AOBO' là hình thoi =>OA // O'B
Lại có: OA vuông góc AC (cmt) => O'B vuông góc AC (Qhệ //, vg góc) hay BF vuông góc AC (đpcm).
b) Xét tứ giác ADKO: ^DKO=^OAD=900 (=^OAC)
=> Tứ giác ADKO nội tiếp đường tròn tâm là trg điểm OD (đpcm).
c) Do tứ giác AOBO' là hình thoi nên AB vuông góc OO' (tại H) (1)
Ta có điểm B thuộc (O') và F đối xứng B qua O' => F thuộc (O') (Vì đường tròn có tâm đối xứng)
Xét (O') đường kính BF và A thuộc cung BF => AB vuông góc AF (2)
Từ (1) và (2) => OO' // AF
Xét tứ giác AOO'F: OO' // AF; OA // O'F (cmt) => Tứ giác AOO'F là hình bình hành
=> AF = OO'. Mà AF=AD nên AD=OO'. Lại có: OO' = OA => AD=OA.
Xét tứ giác ADKO nội tiếp đường tròn => ^AOK+^ADK = 1800
Mà ^ADK + ^ADG = 1800 nên ^AOK=^ADG hay ^AOH=^ADG
Xét \(\Delta\)AHO và \(\Delta\)AGD: AO=AD (cmt); ^AOH=^ADG; ^AHO=^AGD=900
=> \(\Delta\)AHO=\(\Delta\)AGD (Cạnh huyền góc nhọn) => AH=AG
Xét tứ giác AHKG: ^AHK=^HKG=^HAG=900; AH=AG (cmt) => Tứ giác AHKG là hình vuông.
d) Dễ thấy: AO=OO'=O'A => Tam giác AOO' đều => ^AO'O = 600
Lại có: Hình bình hành AOO'F có O'O=O'F => Tứ giác AOO'F là hình thoi
=> ^AO'O=^AO'F = 600 => ^FO'C = 600
=> SHình quạt AO'O = 1/6 S (O) = \(\frac{R^2.\pi}{6}\)
Tương tự, suy ra: S H.quạt AO'O = S H.quạt BO'O = S H,quạt AOO' = S H.quạt BOO' = \(\frac{R^2.\pi}{6}\)
Cộng tất cả lại => \(S_1+S_2+S_3+S_4+2.S_{AOBO'}=4.\frac{R^2.\pi}{6}=\frac{2R^2.\pi}{3}\)
\(\Rightarrow S_1+S_2+S_3+S_4+S_{AOBO'}=\frac{2R^2.\pi}{3}-S_{AOBO'}\)
\(\Rightarrow S_{P.C}=\frac{2R^2.\pi}{3}-R^2.\frac{\sqrt{3}}{2}=\frac{4R^2.\pi}{6}-\frac{3\sqrt{3}.R^2}{6}=\frac{R^2.\left(4\pi-3\sqrt{3}\right)}{6}\)
\(=\frac{R^2.\left(4.3,14-3.1,73\right)}{6}=\frac{R^2.7,37}{6}\)(Chú thích SPhần chung: SP.C)
Vậy diện tích phần chung của (O0 và (O') tính theo R là \(S_{P.C}=\frac{7,37.R^2}{6}.\)
F G A B C E O' K D N O
a) Xét đường tâm O'
\(\widehat{OAC}=90^o\)
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
DC = DA
OA = OC
Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC
Tứ giác OECH có góc CEO + góc CHO = 180 độ
Suy ra tứ giác OECH là tứ giác nội tiếp
a: Xét (O) có
ΔABC nội tiếp
AC là đường kính
Do đó: ΔABC vuông tại B
Xét (O) có
ΔAFC nội tiêp
AC là đường kính
Do đó: ΔAFC vuông tại F
Xét ΔHBA vuông tại B và ΔHFC vuông tại F có
góc BHA=góc FHC
DO đó: ΔHBA đồng dạng với ΔHFC
=>HB/HF=HA/HC
=>HB*HC=HF*HA
b: Kẻ EG vuông góc với DA
Xet tứ giác EDHA có
ED//HA
EA//HD
Do đó: EDHA là hình bình hành
=>EA=DH
=>ΔEAG=ΔHDB
=>AG=BD=2AB
=>B là trung điểm của AG
=>BG=GD
=>ΔEBD cân tại E