Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Do ˆxOyxOy^ và ˆxOy′xOy′^ là 2 góc kề bù
⇒⇒ˆxOyxOy^ + ˆxOy′xOy′^ = 180o
⇒⇒60o + ˆxOy′xOy′^ = 180o
⇒⇒ˆxOy′xOy′^ = 180o - 60o = 120o
Vậy ˆxOy′xOy′^= 120o
Ta có:
Do ˆxOyxOy^và góc ˆx′Oy′x′Oy′^ là 2 góc đối đỉnh
⇒⇒ˆxOy=ˆx′Oy′=60oxOy^=x′Oy′^=60o
Ta có:
Do ˆxOyxOy^ và ˆx′Oyx′Oy^ là 2 góc kề bù
⇒ˆxOy+ˆx′Oy=180o⇒xOy^+x′Oy^=180o
⇒60o+ˆx′Oy=180o⇒60o+x′Oy^=180o
⇒ˆx′Oy=180o−60o=120o⇒x′Oy^=180o−60o=120o
Vậy ˆx′Oy=120ox′Oy=120o^
Hoặc bạn có thể giải bằng cách này thì ngắn gọn hơn
Ta có:
Do ˆxOy′xOy′^ và ˆx′Oyx′Oy^ là hai góc đối đỉnh
⇒ˆxOy′=ˆx′Oy=120o⇒xOy′^=x′Oy^=120o
Vậy ˆx′Oy=120o
Có: góc xOy+ góc xOy'=180o(kề bù)
suy ra: góc xOy'=180o - góc xOy=180o - 60o=120o
góc x'Oy'= góc xOy=60o( đối đỉnh)
Lại có: góc x'Oy=góc xOy'=120o(đối đỉnh)
CHÚC BẠN HỌC TỐT
xOy + x'Oy = 180 độ ( kề bù )
Thay xOy = 4 x'Oy ta có
4 x'Oy + x'Oy = 180 độ
=> 5 x'Oy = 180 độ
=> x'Oy = 36 độ
=> xOy = 4 . x'Oy = 4 . 36 = 144 độ
xOy = x'Oy' = 144 độ ( hai góc đối đỉnh
D là ý đúng
a) Em dự đoán xem hai góc xOy và x’Oy’ có bằng nhau.
b) \(\widehat{xOy} = \widehat{x’Oy’} = 31^0\)
a) Vì O1 và O2 là 2 góc đối đỉnh nên O1=O2=60\(^0\)
Vì O1 và O4 là 2 góc kề bù nên
O1+O4=180\(^0\)
Thay \(60^0+O4=180^0\)
\(O4=180^0-60^0=120^0\)
Vậy x'Oy' = \(60^0,x'Oy=120^0\)
b) góc xOy và góc x'Oy'; góc xOy' và góc yOx' là 2 góc đối đỉnh
x O y y' x' t t'
+) Tính \(\widehat{yOx'}\)
Ta có: \(\widehat{yOx'}+\widehat{xOy}=180^0\)(kề bù)
hay \(\widehat{yOx'}+36^0=180^0\)
\(\Leftrightarrow\widehat{yOx'}=180^0-36^0\)
\(\Leftrightarrow\widehat{yOx'}=144^0\)
Vậy \(\widehat{yOx'}=144^0\)
+) Tính \(\widehat{y'Ox'}\)
Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox'}\) và \(\widehat{yOx}\)là hai góc đối đỉnh.
\(\Rightarrow\widehat{y'Ox'}=\widehat{xOy}=36^0\)
Vậy \(\widehat{y'Ox'}=36^0\)
+) Tính \(\widehat{y'Ox}\)
Vì hai đường thẳng xx' và yy' cắt nhau tại O nên \(\widehat{y'Ox}\) và \(\widehat{yOx'}\)là hai góc đối đỉnh.
\(\Rightarrow\widehat{yOx'}=\widehat{xOy}'=144^0\)
Vậy \(\widehat{y'Ox}=144^0\)
b) Vì \(\widehat{y'Ox'}=\widehat{xOy}\)mà Ot là tia phân giác của \(\widehat{xOy}\),mà Ot' là tia phân giác của \(\widehat{x'Oy'}\)nên Ot và Ot' (điều hiển nhiên)
A
B