Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) PT hoành dộ giao điểm d và (P):
x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)
d tiếp xúc với (P) <=> m=-2 tìm được x=-1
Tọa độ điểm A(-1;1)
b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1
Điều kiện để 2 giao điểm khác phía trục tung là:m >-1
Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)
Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)
a) Phương trình hoàng độ giao điểm của (d) và (P) là:
x2=3x+m2 <=> x2-3x-m2=0 (1)
\(\Delta=3^2-4.\left(-m^2\right)=9+4m^2>0\)với mọi m thuộc R
=> phương trình (1) có hai nghiệm phân biệt
=> (d) luôn cắt (p) tại hai điểm phân biệt.
b) Gọi x1,, x2 là hoành độ giao điểm ứng với y1, y2
Ta có : y1=3x1+m2=x12
y2=3x2+m2=x22
=> 3x1+m2+3x2+m2=11.x12.x22=> 3(x1+x2)+2m2=11(x1.x2)2
Áp dụng định lí viet
x1+x2=3
x1.x2=-m2
Thay vào giải. Em làm tiếp nhé!
a) Thay A(1; -9) vào (d), ta có:
-9 = 3m + 1 - m2
<=> -9 - 3m - 1 + m2 = 0
<=> -10 - 3m + m2 = 0
<=> m = 5 hoặc m = -2
b) Lập phương trình hoành độ giao điểm:
x2 = 3mx + 1 - m2
<=> x2 - 3mx - 1 + m2 = 0
Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)
<=> (-3m)2 - 4.1.(-1 + m2) = 0
<=> 9m2 + 4 - 4m2 > 0
<=> 5m2 + 4 > 0\(\forall m\)
Ta có: x1 + x2 = 2x1x2
Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)
<=> 3m = 2(-1 + m2)
<=> 3m = -2 + m2
<=> 3m + 2 - m2 = 0
<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)
Lời giải:
PT hoành độ giao điểm:
\(x+m-(\frac{-1}{2}x^2)=0\Leftrightarrow x^2+2x+2m=0(*)\)
Để (P) cắt (d) tại 2 điểm phân biệt thì $(*)$ cũng phải có 2 nghiệm phân biệt. Điều này xảy ra khi \(\Delta'=1-2m>0\Leftrightarrow m< \frac{1}{2}\)
PT có 2 nghiệm $x_1,x_2$ thỏa mãn \(x_1x_2=2m\)(định lý Vi-et)
Tung độ giao điểm : $y_1=\frac{-1}{2}x_1^2; y_2=\frac{-1}{2}x_2^2$. Khi đó:
\(y_1y_2=16\) \(\Leftrightarrow \frac{-1}{2}x_1^2.\frac{-1}{2}x_2^2=16\)
\(\Leftrightarrow (x_1x_2)^2=64\)
\(\Leftrightarrow (2m)^2=64\Rightarrow m=\pm 4\). Kết hợp với đk $m< \frac{1}{2}$ suy ra $m=-4$
Để hai đường thing d1 và d2 song song với nhau
=>\(\left\{{}\begin{matrix}a=a^,\\b\ne b^,\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6=-2\\m\ne3\end{matrix}\right.\)
\(\Leftrightarrow m=\mp2\) t/m
Vậy với m ,,, thì d1 // d2
Theo bài ra ta có ddường thing d cắt trục ting tại điểm có tung độ bằng 2 , gọi giao điểm của d1 và Oy là A
=> \(A_{\left(0,2\right)}\)
=> A \(\in\) \(\left(d1\right)y=\left(m^2-6\right)x+m\)
=> Thay x = 0 và y = 2 vào phương trình đường thẳng d1 ta được :
m= 2
Vậy ,,,,