Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng
=>OH/OK=OF/OA
=>OK.OF= OH.OA=OB^2=OD^2
=>OK/OD=OD/OF
=> Tam giác ODK và Tam giác OFD đồng dạng
=>Tam giác ODF vuông tại D
=>FD la tiếp tuyến của (O) (đpcm)
d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)
=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED
mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90
=> F,E,I thẳng hàng
Ta có BINF là hình bình hành nên FN=BI=IA => IANF la hbh
=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)
a: Xét ΔOBC có OB=OC
nên ΔOBC cân tại O
mà OA là đường cao
nên OA là đường phân giác
Xét ΔBOA và ΔCOA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔBOA=ΔCOA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBDC nội tiếp
DC là đường kính
Do đó;ΔBDC vuông tại B
=>BC\(\perp\)BD
mà BC\(\perp\)OA
nên OA//BD
Bạn tự vẽ hình nha.
a) Qua A kẻ tiếp tuyến chung trong của (O) và (O') cắt d tại N.
Theo tính chất 2 tiếp tuyến cắt nhau ta có: NA = NB và NA = NC . Do đó NB = NC => NA là trung tuyến của tam giác ABC và \(NA=\frac{1}{2}BC\). Từ đó => tam giác ABC vuông tại A.
b) Theo phần a ta đã chứng minh được N là trung điểm BC thì AN là tiếp tuyến chung của 2 đường tròn => M trùng với N. Vậy AM là tiếp tuyến chung của 2 đường tròn.
Nguyễn Ngọc LinhNguyễn Thị Diễm QuỳnhAki TsukiIchigoLê Ngọc KhôiPhạm Lan HươngtthVũ Minh TuấnMinh AnBăng Băng 2k6Lê Thị Thục HiềnNguyễn Lê Phước ThịnhNo choice teenHISINOMA KINIMADOAkai HarumaNguyễn Huy ThắngNguyễn Thanh HằngHồng Phúc NguyễnPhương AnMysterious Person