Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)
\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)
\(=3x^4-5x^3-x^2+x-5\)
\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)
\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)
\(=x^4-x^3-x-1\)
b) \(A\left(x\right)+B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)
\(=5x^4-6x^3-x^2-6\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)
\(=2x^4-4x^3-x^2+2x-4\)
Câu 1
a. Ta có:
A(x) = 5x3 - 3x2 - 2 + 5x - 7x4 + 2x
= -7x4 + 5x3 - 3x2 + 7x - 2
B(x) = -5x3 + 7x4 + 3x2 - 3x + 4
=7x4 - 5x3 + 3x2 - 3x + 4
b. Ta có
A(x) + B(x) = 4x + 2
A(x) - B(x) = -14x4 + 10x3 - 6x2 + 10x - 6
c. Ta có: C(x) = A(x) + B(x) = 4x + 2 = 0
⇔4x = -2 ⇔x = -1/2
d. Thay x = 1 vào biểu thức D(x) ta có
D(1)= -14 + 10 - 6 + 10 - 6 = -6
Câu 2
Vì đa thức P(m) = mx2 - 1 có nghiệm là 3 nên ta có
m.32 - 1 = 0 ⇒ 3m = 1 ⇒ m = 1/3
a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)
\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)
\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)
\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)
b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\)
hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)
\(=3x^3-x^4+4-5x\)
Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)
Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)
hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)
\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)
\(=x^3+10x^2-5x^4+10-3x\)
Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)
\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
b
\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)
\(-\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=6x^5-6x^4+x^2+4x+\frac{63}{4}\)
c.
Thay x=-1 vào P(x) thấy đúng còn Q(x) thấy nó khác 0
d
\(P\left(x\right)-Q\left(x\right)=6\cdot\left(-1\right)^5-6\cdot\left(-1\right)^4+\left(-1\right)^2+4\left(-1\right)+\frac{63}{4}\)
\(=-6-6+1-4+\frac{63}{4}\)
Tự tính nốt
a,
\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)
\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)
P(x) = A(x) + B(x)
= 5x5 + 2x4 - x2 + 3x2 + x4 - 4 + 5x5
= ( 5 + 5 )x5 + ( 2 + 1 )x4 + ( 3 - 1 )x2 - 4
= 10x5 + 3x4 + 2x2 - 4
a, Ta có : \(P\left(x\right)=\left(5x^5+2x^4-x^2\right)+\left(3x^2+x^4-4+5x^2\right)\)
\(=5x^5+2x^4-x^2+3x^2+x^4-4+5x^5\)
\(=10x^5+3x^4+2x^2-4\)
Ta có : \(Q\left(x\right)=\left(5x^5+2x^4-x^2\right)-\left(3x^2+x^4-4+5x^5\right)\)
\(=5x^5+2x^4-x^2-3x^2-x^4+4-5x^5\)
\(=x^4-4x^2+4\)
b, E chỉ cần lắp 1 thay x vào tính thôi, cái này cj ko lm nhé !
c, \(Q\left(x\right)=x^4-4x^2+4=0\)
\(\left(x^2-2\right)^2=0\Leftrightarrow x^2-2=0\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)
Vậy đa thức Q(x) có nghiệm.