Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, P(x) + Q(x) = 1x2 -2x - 4
P(x) - Q(x) = 2x3 - 3x2 - 4x + 6
b, Tự lm nhé mk chưa nghĩ ra
#Hk_tốt
#Ngọc's_Ken'z
a. P(x)+Q(x)=(x3-3x-x2+1)+(2x2-x3+x-5)
=( x3-x3) +(-x2+2x2)+(-3x+x)+(1-5)
= x2-2x-4
P(x)-Q(x)=(x3-3x-x2+1)-(2x2-x3+x-5)
= x3_3x-x2+1-2x2+x3+x+5
= ( x3+x3) +(-x2_2x2)+(-3x-x)+(1+5)
= 2x3_3x2-4x+6
\(b,P\left(x\right)+Q\left(x\right)=x^3-3x-x^2+1+2x^2-x^3+x-5=0\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)
Ví sao \(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\). Giải thích hộ mình với
a) P(x)=5x3 - 3x - x + 7
Q(x)=-5x3- x2 + 2x + 2x -3 - 2
b) P(x) + Q(x) = ( 5x3- 3x - x + 7)+ ( -5x3- x2 + 2x + 2x - 3 - 2 )
=5x3 - 3x - x + 7 - 5x3 - x2 + 2x + 2x - 3 - 2
=(5x3-5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)
=> M = -x2+2
P(x)-Q(x)= (5x3-3x-x+7)-(-5x3-x2+2x+2x-3-2)
= 5x3-3x-x+7+5x3-x2+2x+2x-3-2
=(5x3+5x3)+(-x2)+(-3x-x+2x+2x)+(7-3-2)
=> N =10x3 -x2 +2
c)-x2+2=0
-x2=0+2
-x2=2
=>-x2=\(-\sqrt{2}\)
P(x) = 5x3 - 3x + 7 - x = 5x3 + ( -3x - x ) + 7 = 5x3 - 4x + 7
Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2 = -5x3 + ( 2x + 2x ) - x2 + ( -3 - 2 ) = -5x3 + 4x - x2 - 5
M(x) = P(x) + Q(x)
= 5x3 - 4x + 7 + ( -5x3 + 4x - x2 - 5 )
= ( 5x3 - 5x3 ) + ( 4x - 4x ) - x2 + ( 7 - 5 )
= -x2 + 2
N(x) = P(x) - Q(x)
= ( 5x3 - 4x + 7 ) - ( -5x3 + 4x - x2 - 5 )
= 5x3 - 4x + 7 + 5x3 - 4x + x2 + 5
= ( 5x3 + 5x3 ) + ( -4x - 4x ) + x2 + ( 7 + 5 )
= 10x3 - 8x + x2 + 12
M(x) = 0 <=> -x2 + 2 = 0
<=> -x2 = -2
<=> x2 = 2
<=> x = \(\pm\sqrt{2}\)
Vậy nghiệm của M(x) là \(\pm\sqrt{2}\)
a) \(P\left(x\right)+Q\left(x\right)=x^3-3x^2+x^2+1+2x^2-x^3+x-5\)
\(=x-4\)
\(P\left(x\right)-Q\left(x\right)=x^3-3x^2+x^2+1-2x^2+x^3-x+5\)
\(=2x^3-4x^2-x+6\)
b) Ta có: \(P\left(x\right)+Q\left(x\right)=x-4=0\)
\(< =>x=4\)
Vậy nghiệm của P(x)+Q(x) là: x=4.
a/P(x)+Q(x)=x3-3x+x2+1+2x2-x3+x-5=3x2-2x-4
P(x)-Q(x)=x3-3x+x2+1-2x2+x3-x+5=2x3-x2-4x+6
b/P(x)+Q(x)=3x2-2x-4 (a=3,b=-2=>b'=-2/2=-1,c=-4)
\(\Delta=\left(b'\right)^2-a.c=\left(-1\right)^2-3.\left(-4\right)=13\)
\(\chi_1=\frac{-b'+\sqrt{\Delta}}{a}=\frac{-\left(-1\right)+\sqrt{13}}{3}=\frac{1+\sqrt{13}}{3}\)
\(\chi_2=\frac{-b'-\sqrt{\Delta}}{a}=\frac{-\left(-1\right)-\sqrt{13}}{3}=\frac{1-\sqrt{13}}{3}\)
a, P(x) + Q(x)=\(x^3-3x+x^2+1\)+\(2x^2-x^3+x-5\)
=\(\left(x^3-x^3\right)+\left(-3x+x\right)\)+\(\left(x^2+2x^2\right)+\left(1-5\right)\)=\(-2x+3x^2-4\)
P(x)-Q(x)=\(x^3-3x+x^2+1\)-\(2x^2+x^3-x+5\)=\(\left(x^3+x^3\right)+\left(-3x-x\right)\)+\(\left(x^2-2x^2\right)+\left(1+5\right)\)
=\(2x^3-4x-x^2+6\)
vậy P(x)+Q(x)=\(-2x+3x^2-4\)
P(x)-Q(x)=\(2x^3-4x-x^2+6\)
a) \(P\left(x\right)=x^3-3x+x^2+1\)
\(=x^3+x^2-3x+1\)
\(Q\left(x\right)=2x^2-x^3+x-5\)
\(-x^3+2x^2+x-5\)
\(P\left(x\right)=x^3+x^2-3x+1\)
+
\(Q\left(x\right)=-x^3+2x^2+x-5\)
___________________________________
\(P\left(x\right)+Q\left(x\right)=\) \(3x^2-2x-4\)
Vậy P(x) + Q(x) = 3x^2 - 2x - 4
\(P\left(x\right)=x^3+x^2-3x+1\)
-
\(Q\left(x\right)=-x^3+2x^2+x-5\)
____________________________________________
\(P\left(x\right)-Q\left(x\right)=\)\(2x^3-1x^2-4x+6\)
Vậy P(x) - Q(x) = 2x^3 - 1x^2 - 4x + 6