Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}P + Q = ({x^2} + 2{\rm{x}}y + {y^2}) + \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P + Q = {x^2} + 2{\rm{x}}y + {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\end{array}\)
b)
\(\begin{array}{l}P + Q = ({x^2} + 2{\rm{x}}y + {y^2}) + \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P + Q = {x^2} + 2{\rm{x}}y + {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\P + Q = \left( {{x^2} + {x^2}} \right) + \left( {2{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} + {y^2}} \right)\end{array}\)
c)
\(\begin{array}{l}P + Q = ({x^2} + 2{\rm{x}}y + {y^2}) + \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P + Q = {x^2} + 2{\rm{x}}y + {y^2} + {x^2} - 2{\rm{x}}y + {y^2}\\P + Q = \left( {{x^2} + {x^2}} \right) + \left( {2{\rm{x}}y - 2{\rm{x}}y} \right) + \left( {{y^2} + {y^2}} \right)\\P + Q = 2{{\rm{x}}^2} + 2{y^2}\end{array}\)
Ta có:
\(\begin{array}{l}P = {x^3} + 2{{\rm{x}}^2}y + {x^2}y + 3{\rm{x}}{y^2} + {y^3}\\P = {x^3} + \left( {2{{\rm{x}}^2}y + {x^2}y} \right) + 3{\rm{x}}{y^2} + {y^3}\\P = {x^3} + 3{{\rm{x}}^2}y + 3{\rm{x}}{y^2} + {y^3}\end{array}\)
\(\begin{array}{l}A - B = \left( {5{x^2}y + 5x - 3} \right) - \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 - xy + 4{x^2}y - 5x + 1\\ = \left( {5{x^2}y + 4{x^2}y} \right) - xy + \left( {5x + 5x} \right) + \left( { - 3 + 1} \right)\\ = 9{x^2}y - xy + 10x - 2\end{array}\)
\(\begin{array}{l}A + B = \left( {5{x^2}y + 5x - 3} \right) + \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 + xy - 4{x^2}y + 5x - 1\\ = \left( {5{x^2}y - 4{x^2}y} \right) + xy + \left( {5x + 5x} \right) + \left( { - 3 - 1} \right)\\ = {x^2}y + xy + 10x - 4\end{array}\)
a) Các biểu thức: \(\dfrac{1}{5}x{y^2}{z^3}; - \dfrac{3}{2}{x^4}{\rm{yx}}{{\rm{z}}^2}\) là đơn thức
b) Các biểu thức: \(2 - x + y; - 5{{\rm{x}}^2}y{z^3} + \dfrac{1}{3}x{y^2}z + x + 1\) là đa thức
Thay x = -1 , y = 2 vào đa thức P ta được:
\(\begin{array}{l}P = {\left( { - 1} \right)^3}.2 - 14.{2^3} - 6.\left( { - 1} \right).2^2 + 2 + 2\\P = - 2 - 112 + 24 + 4 = -86\end{array}\)
Vậy đa thức P = -86 tại x = -1; y = 2
a)
\(P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\)
b)
\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\end{array}\)
c)
\(\begin{array}{l}P - Q = ({x^2} + 2{\rm{x}}y + {y^2}) - \left( {{x^2} - 2{\rm{x}}y + {y^2}} \right)\\P - Q = {x^2} + 2{\rm{x}}y + {y^2} - {x^2} + 2{\rm{x}}y - {y^2}\\P - Q = \left( {{x^2} - {x^2}} \right) + \left( {2{\rm{x}}y + 2{\rm{x}}y} \right) + \left( {{y^2} - {y^2}} \right)\\P - Q = 4{\rm{x}}y\end{array}\)