K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2018

Giải:

a) Sắp xếp:

\(A\left(x\right)=2x^3+2x-3x^2+1=2x^3-3x^2+2x+1\)

\(B\left(x\right)=2x^2+3x^3-x-5=3x^3+2x^2-x-5\)

b) Mình sẽ giải bằng cách cộng hạng tử cùng biến, nếu đặt tính thì bạn tự làm và so sánh kết quả

\(A\left(x\right)+B\left(x\right)\)

\(=2x^3-3x^2+2x+1+3x^3+2x^2-x-5\)

\(=\left(2x^3+3x^3\right)+\left(2x^2-3x^2\right)+\left(2x-x\right)+\left(1-5\right)\)

\(=5x^3-x^2+x-4\)

c) Mình sẽ giải bằng cách cộng hạng tử cùng biến, nếu đặt tính thì bạn tự làm và so sánh kết quả

\(A\left(x\right)-B\left(x\right)\)

\(=2x^3-3x^2+2x+1-\left(3x^3+2x^2-x-5\right)\)

\(=2x^3-3x^2+2x+1-3x^3-2x^2+x+5\)

\(=\left(2x^3-3x^3\right)+\left(-2x^2-3x^2\right)+\left(2x+x\right)+\left(1+5\right)\)

\(=-x^3-5x^2+3x+6\)

Vậy ...

12 tháng 5 2019

phần a nek

sắp xếp : M(x) =-x3+1/2x2-3x+3

N(x)=1/2x3+x2-4x+6

CHÚC BẠN HỌC TỐT !!!!

10 tháng 4 2020

dsssws

13 tháng 8 2018

Ta có :

A(x) = 3x - 2x2 - 2 +6x2 = 4x2 + 3x - 2

B(x) = 3x2 - x - 2x3 + 4 = -2x3 + 3x2 - x + 4

C(x) = 1 + 4x3 - 2x = 4x3 - 2x + 1

⇒ A(x) + B(x) - C(x)

= (4x2 + 3x - 2) + (-2x3 + 3x2 - x + 4) - (4x3 - 2x + 1)

= 4x2 + 3x - 2 - 2x3 + 3x2 - x + 4 - 4x3 + 2x - 1

= 7x2 + 4x + 1 - 6x3 = -6x3 + 7x2 + 4x + 1

a/A(x)=3x3+2x2-x+7-3x

Ax)=3x3+2x2-4x+7  bậc là 3

B(x)=2x-3x3+3x2-5x-1

B(x)=-3x3+3x2-3x-1 bậc là 3

b)A(x)+b(x)=5x2-7x+6

29 tháng 5 2016

aTa thu gọn hai đa thức sau : 

A(x)=3x3+2x2-x+7-3x

=3x3+2x2-x-3x+7

=3x3+2x2-4x+7

B(x)=2x-3x3+3x2-5x-1

=2x-5x-3x3+3x2-1

=-3x-1

a,A(x)+B(x)=(3x3+2x2-4x+7)+(-3x-1)

=3x3+2x2-4x+7+(-3)x-1

=3x3+2x2-4x+(-3)x+7-1

=3x3+2x2-7x+6

b,A(x)-B(x)=(3x3+2x2-4x+7)-(-3x-1)

=3x3+2x2-4x+7+3x+1

=3x3+2x2-4x+3x+7+1

=3x3+2x2-x+8

29 tháng 5 2016

bạn ơi ghi số mũ giùm mk 

29 tháng 5 2016

a)

\(A\left(x\right)=3x^3+2x^2-4x+7\)

\(B\left(x\right)=-3x^3+3x^2-3x-1\)

A(x) là đa thức bậc 3

B(x) là đa thức bậc 3

b)

\(A\left(x\right)+B\left(x\right)=\left(3x^3+2x^2-4x+7\right)+\left(-3x^3+3x^2-3x-1\right)=5x^2-7x+6\)

c)

\(A\left(x\right)-B\left(x\right)=\left(3x^3+2x^2-4x+7\right)-\left(-3x^3+3x^2-3x-1\right)=6x^3-x^2-x+8\)                            

25 tháng 3 2020

a) Ta có : \(A\left(x\right)+B\left(x\right)\)

\(=2x^3+2x-3x^2+1+2x^2+3x^3-x-5\)

\(=\left(2x^3+3x^3\right)+\left(-3x^2+2x^2\right)+\left(2x-x\right)+\left(1-5\right)\)

\(=5x^3-x^2-x-4\)

b) Ta sẽ sắp xếp như sau :

\(A\left(x\right)=2x^3-3x^2+2x+1\)

\(B\left(x\right)=3x^3+2x^2-x-5\)

c) Ta có : \(A\left(x\right)-B\left(x\right)\)

\(=\left(2x^3+2x-3x^2+1\right)-\left(2x^2+3x^3-x-5\right)\)

\(=2x^3+2x-3x^2+1-2x^2-3x^3+x+5\)

\(=\left(2x^3-3x^3\right)+\left(-3x^2-2x^2\right)+\left(2x+x\right)+\left(1+5\right)\)

\(=-x^3-5x^2+3x+6\)

a: \(P\left(x\right)=5x^5-4x^4+2x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2+x+\dfrac{1}{4}\)

b: \(P\left(x\right)+Q\left(x\right)=4x^5-2x^4-2x^3+5x^2+4x+\dfrac{25}{4}\)

21 tháng 3 2021

a, Sắp xếp : \(P\left(x\right)=2x^3+5x^2-3x^4+7-4x\)

\(\Rightarrow P\left(x\right)=-3x^4+2x^3-5x^2-4x+7\)

\(Q\left(x\right)=-3+2x^4-x+x^3-5x^2\)

\(\Rightarrow Q\left(x\right)=2x^4+x^3-5x^2-x-3\)

b, Ta có :* Đặt \(V\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

hay \(V\left(x\right)=2x^3+5x^2-3x^4+7-4x-3+2x^4-x+x^3-5x^2\)

\(=3x^3-x^4+4-5x\)

Vậy \(V\left(x\right)=3x^3-x^4+4-5x\)

Ta có : * Đặt \(K\left(x\right)=P\left(x\right)-Q\left(x\right)\)

hay \(2x^3+5x^2-3x^4+7-4x-\left(-3+2x^4-x+x^3-5x^2\right)\)

\(=2x^3+5x^2-3x^4+7-4x+3-2x^4+x-x^3+5x^2\)

\(=x^3+10x^2-5x^4+10-3x\)

Vậy \(K\left(x\right)=x^3+10x^2-5x^4+10-3x\)

31 tháng 5 2018

f(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)

g(x)=\(x^5-7x^4+4x^3-3x-9\)

f(x)+g(x)=\(9-x^5-7x^4-2x^3+x^2+4x\)+\(x^5-7x^4+4x^3-3x-9\)

=(9-9)-(\(x^5-x^5\))\(-\left(7x^4+7x^4\right)-\left(2x^3-4x^3\right)+x^2\)+(\(\)\(4x-3x\))

=\(-14x^4+2x^3+x^2+x\)

31 tháng 5 2018

a) Sắp xếp các đa thức theo lũy thừa giảm của biến :

\(f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)

\(g\left(x\right)=x^5-7x^4+2x^3+2x^3-3x-9\)

b, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(=\left(-x^5-7x^4-2x^3+x^2+4x+9\right)+\left(x^5-7x^4+2x^3+2x^3-3x-9\right)\)

=> h(x) = -14x4 + 2x3 + x2 +x