Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3x^3-x^2+3x^2-x-6x+2+m-2 chia hết cho 3x-1
=>m-2=0
=>m=2
b: =>\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2+3x-1-6x+a+1⋮x^2+3x-1\)
=>-6x+a+1=0
=>6x=a+1
=>x=(a+1)/6
Để \(f\left(x\right)=x^4+2x^3-12x^2+7x+2a-10\)chia hết cho \(g\left(x\right)=x^2-3x+2\)thì tồn tại đa thức \(q\left(x\right)\)sao cho \(f\left(x\right)=g\left(x\right)q\left(x\right)\)
Mà ta có \(g\left(x\right)=x^2-3x+2=\left(x-1\right)\left(x-2\right)\)
Suy ra \(g\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
nên từ đó suy ra \(\hept{\begin{cases}f\left(1\right)=0\\f\left(2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2a-12=0\\2a-12=0\end{cases}}\Leftrightarrow a=6\).
Vậy \(a=6\).
\(2x^2+3x-27=2x^2-6x+9x-27=2x\left(x-3\right)+9\left(x-3\right)=\left(2x+9\right)\left(x-3\right)\)
\(x^3-7x+6=x^3-x-6x+6=x\left(x^2-1\right)-6\left(x-1\right)=x\left(x-1\right)\left(x+1\right)-6\left(x-1\right)=\left(x-1\right)\left(x^2+x-6\right)\)
\(x^3+5x^2+8x+4=x^3+x^2+4x^2+8x+4=x^2\left(x+1\right)+4\left(x^2+2x+1\right)=x^2\left(x+1\right)+4\left(x+1\right)^2\)
\(=\left(x+1\right)\left(x^2+4x+4\right)=\left(x+1\right)\left(x+2\right)^2\)
\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)
2A(x)-D(x)=3B(x)
<=>D(x)=2A(x)-3B(x)
=4x4-8+2x3-14x-(3x4-3x3+3x2+21x+12)
Rút gọn đi ta đc:D(x)=x4+5x3-3x2-35x-20
Đúng thì chọn nha!