K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

\(B=\left(y^2-x^2\right)=\left(y-x\right)\left(y+x\right)\)

\(A-B=\left(y-x\right)\left(2x-y\right)\).Do \(\left(x-y\right)⋮11\Rightarrow-1\left(x-y\right)⋮11\Rightarrow y-x⋮11\)

Đặt y - x = 11k.Ta có: \(A-B=11k\left(2x-y\right)⋮11^{\left(đpcm\right)}\)

21 tháng 5 2020

7r6jp

1 tháng 3 2018

BÀI 1:

\(A+B=x^2y+xy^2\)

\(\Leftrightarrow\)\(A+B=xy\left(x+y\right)\)

Vì    \(x+y\)\(⋮\)\(13\)

nên     \(xy\left(x+y\right)\)\(⋮\)\(13\)

Vậy    \(A+B\)\(⋮\)\(13\)  nếu      \(x+y\)\(⋮\)\(13\)

15 tháng 5 2020

44WRW

10 tháng 3 2019

\(M-N=3x\left(x-y\right)-\left(x^2-y^2\right)\)

\(M-N=\left(x-y\right)\left(3x-1\right)⋮11\)

Vậy \(\left(M-N\right)⋮11\)

22 tháng 6 2016

1/

\(11^9+11^{10}=11^9\left(1+11\right)=12x11^9\) chia hết cho 12

2/

\(A=3\left(x+y\right)+8xy=3.\frac{3}{4}-8.2=-\frac{55}{4}\)

8 tháng 5 2019

A+B= x^2y+xy^2 = xy.(x+y)

mà x+y chia hết cho 13

nên xy.(x+y) chia hết cho 13

hay A+B chia hết cho 13

8 tháng 5 2019

Ta có

A + B = x2y + xy2 = \(xy\left(x+y\right)\)

Mà x + y chia hết cho 13

=> Xy(x+y) chia hết cho 13

=> A + B chia hết cho 13