Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = {\(\dfrac{1}{n\left(n+1\right)}\)| \(n\in\mathbb{N},1\le n\le5\)}
b) B = {\(\dfrac{1}{n^2-1}\)|\(n\in\mathbb{N},2\le n\le6\)\(\)}
Bài 2:
a: A={1/x(x+1)|\(x\in N;1< =x< =5\)}
b: B={x/(x^2-1)|\(x\in N;2< =x< =6\)}
Bài 2:
a: \(A=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
b: \(B=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}\)
\(=5+\dfrac{7}{11}=\dfrac{62}{11}\)
c: \(C=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{5}{7}=1\)
d: \(D=\dfrac{7}{10}\cdot\dfrac{8}{3}\cdot20\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}\)
\(=\dfrac{20}{10}\cdot7\cdot\dfrac{8}{3}\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}=2\cdot\dfrac{5}{4}=\dfrac{5}{2}\)
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
2/3+(-2/3)=3/5+(3/-5)=0
i: 2/5-1/10=4/10-1/10=3/10
2/5+(-1/10)=4/10-1/10=3/10
5/6-2/3=5/6-4/6=1/6
5/6+(-2/3)=1/6
a. R / \(\left\{-2\right\}\)
b. R / \(\left\{4;-1\right\}\)
c. R ( mẫu luôn > 0 )
d. \(\left(2;+\infty\right)\)
e. \(\left(-\infty;\dfrac{5}{6}\right)\)
f. \(\left(2;+\infty\right)\)
g. \(\left(1;3\right)\)
h. \(\left(5;+\infty\right)\)
i. \(\left(1;+\infty\right)\)
k. \(\left(-\infty;2\right)\)
l. R/\(\left\{\pm3\right\}\)
m. \(\left(-2;+\infty\right)/\left\{3\right\}\)
5. \(y=\dfrac{-3x}{x+2}\)
xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)
vậy D= (\(-\infty;+\infty\))\{-2}
6. \(y=\sqrt{-2x-3}\)
xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)
vậy D= (\(-\infty;\dfrac{-3}{2}\)]
7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)
xác định khi: x-4 >0 <=> x>4
vậy D= (\(4;+\infty\))
8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)
xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)
vậy D= (\(-\infty;5\))\ {3}
9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)
xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)
vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]
1. \(y=\dfrac{3x-2}{x^2-4x+3}\)
xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)
2.\(y=2\sqrt{5-4x}\)
xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)
vậy D= (\(-\infty;\dfrac{5}{4}\)]
3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)
xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)
vậy D= (\(-3;\dfrac{5}{2}\)]
4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)
xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)
Vậy D= [\(-2;9\)]\{2}
a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)
=>(2x-1)(x-2)(x+1)<>0
hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)
b: ĐKXĐ: x+5<>0
=>x<>-5
c: ĐKXĐ: x4-1<>0
hay \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x^4+2x^2-3< >0\)
=>\(x\notin\left\{1;-1\right\}\)