Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
1/a, f(x) - g(x) + h(x) = x3 - 2x2 + 3x +1 - x3 - x + 1 +2x2 - 1
=(x3 - x3) + (-2x2 + 2x2) + (3x - x) + (1 + 1 - 1)
=2x + 1
b, f(x) - g(x) + h(x) = 0
<=> 2x + 1 = 0
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2 là nghiệm của đa thức f(x) - g(x) + h(x)
2/ a, 5x + 3(3x + 7)-35 = 0
<=> 5x + 9x + 21 - 35 = 0
<=> 14x - 14 = 0
<=> 14(x - 1) = 0
<=> x-1 = 0
<=> x = 1
Vậy 1 là nghiệm của đa thức 5x + 3(3x + 7) -35
b, x2 + 8x - (x2 + 7x +8) -9 =0
<=> x2 + 8x - x2 - 7x - 8 - 9 =0
<=> (x2 - x2) + (8x - 7x) + (-8 -9)
<=> x - 17 = 0
<=> x =17
Vậy 17 là nghiệm của đa thức x2 + 8x -(x2 + 7x +8) -9
3/ f(x) = g (x) <=> x3 +4x2 - 3x + 2 = x2(x + 4) + x -5
<=> x3 +4x2 - 3x + 2 = x3 + 4x2 + x - 5
<=> -3x + 2 = x - 5
<=> -3x = x - 5 - 2
<=> -3x = x - 7
<=>2x = 7
<=> x = 7/2
Vậy f(x) = g(x) <=> x = 7/2
4/ có k(-2) = m(-2)2 - 2(-2) +4 = 0
=> 4m + 4 + 4 = 0
=> 4m + 8 = 0
=> 4m = -8
=> m = -2
a) f(x)-g(x)+h(x)= (2x^2-3x^3)-(3x-3x^3+2x-2)+(2x^2+1)
=2x^2-3x^3-3x+3x^3-2x+2+2x^2+1
=(2x^2+2x^2)+(-3x^3-3x^3)+(2x+3x)+(-2+1)
=4x^2-6x^3+5x-1
b)g(x)-f(x)+h(x)=3x-3x^3+2x-2-2x^2+3x^3+2x^2+1
=(3x+2x)+(-3x^3+3x^3)+(-2x^2+2x^2)+(-2+1)
=5x-1
bạn ơi, cái chỗ mình bỏ trống là như trên nha
a. f(x)+g(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)
=2x5-x5-4x4+2x4+3x3-3x3-x2-x2+5x-2x-1+7
=x5-2x4-2x2+3x+6
b. f(x)+h(x)=2x5−4x4+3x3−x2+5x−1+x5−2x4−2x2−x−3
=2x5+x5-4x4-2x4+3x3-x2-2x2+5x-x-1-3
=3x5-6x4+3x3-3x2+6x-4
c. g(x)+h(x)=−x5+2x4−3x3−x2−2x+7+x5−2x4−2x2−x−3
=-x5+x5+2x4-2x4-3x3-x2-2x2-2x-x+7-3
=-3x3-3x2-3x+4
d. f(x)-g(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)
=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7
=2x5-x5-4x4-2x4+3x3+3x3-x2+x2+5x+2x-1-7
=x5-6x4+6x3+7x-8
e. f(x)-h(x)=2x5−4x4+3x3−x2+5x−1-(x5−2x4−2x2−x−3)
=2x5−4x4+3x3−x2+5x−1-x5+2x4+2x2+x+3
=2x5-x5-4x4+2x4+3x3-x2+2x2+5x+x-1+3
=x5-2x4+3x3+x2+6x-4
h. g(x)-h(x)=−x5+2x4−3x3−x2−2x+7-(x5−2x4−2x2−x−3)
=−x5+2x4−3x3−x2−2x+7-x5+2x4+2x2+x+3
=-x5-x5+2x4+2x4-3x3-x2+2x2-2x+x+7+3
=-2x5+4x4-3x3+x2-x+10
f. f(x)+g(x)+h(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)+x5−2x4−2x2−x−3
=2x5-x5+x5-4x4+2x4-2x4+3x3-3x3-x2-x2-2x2+5x-2x-x-1+7-3
=2x5-4x4-4x2+2x+3
g. f(x)+g(x)-h(x)=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)-(x5−2x4−2x2−x−3)
=2x5−4x4+3x3−x2+5x−1+(−x5+2x4−3x3−x2−2x+7)-x5+2x4+2x2+x+3
=2x5-x5-x5-4x4+2x4+2x4+3x3-3x3-x2-x2+2x2+5x-2x+x-1+7+3
=4x+9
n. f(x)-g(x)+h(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)+x5−2x4−2x2−x−3
=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7+x5−2x4−2x2−x−3
=2x5-x5+x5-4x4-2x4-2x4+3x3+3x3-x2+x2-2x2+5x+2x-x-1-7-3
=2x5-8x4+6x3-2x2+6x-11
m. f(x)-g(x)-h(x)=2x5−4x4+3x3−x2+5x−1-(−x5+2x4−3x3−x2−2x+7)-(x5−2x4−2x2−x−3)
=2x5−4x4+3x3−x2+5x−1-x5-2x4+3x3+x2+2x-7-x5+2x4+2x2+x+3
=2x5-x5-x5-4x4-2x4+2x4+3x3+3x3-x2+x2+2x2+5x+2x+x-1-7+3
=-4x4+6x3+2x2+8x-5
Lời giải:
a)
$f(x)=3x^3+4x^2-2x-1-2x^3=(3x^3-2x^3)+4x^2-2x-1=x^3+4x^2-2x-1$
b)
$h(x)=f(x)-g(x)=(x^3+4x^2-2x-1)-(x^3+4x^2+3x-2)$
$=(x^3-x^3)+(4x^2-4x^2)-(2x+3x)-1+2=1-5x$
c)
$h(x)=0\Leftrightarrow 1-5x=0\Leftrightarrow x=\frac{1}{5}$
Vậy $x=\frac{1}{5}$ là nghiệm của $h(x)$
f(x) +g(x) + h(x)
=(2x4 - x3 + x - 3 + 5x5) + (-x5 + 5x2 +4x + 2 + 3x5) + (x2 + x + 1 + 2x3 + 3x4)
= 2x4 - x3 + x - 3 + 5x5 +(-x5) + 5x2 +4x + 2 + 3x5 + x2 + x + 1 + 2x3 + 3x4
= 7x5 + 5x4 + x3 +x2 + 6x
f(x) - g(x) - h(x)
=(2x4 - x3 + x - 3 + 5x5) - (-x5 + 5x2 +4x + 2 + 3x5) - (x2 + x + 1 + 2x3 + 3x4)
=2x4 - x3 + x - 3 + 5x5 +x5 - 5x2 -4x - 2 -3x5 - x2 - x - 1 - 2x3 - 3x4
= 3x5 - x4 - 3x3 - 6x2 - 4x - 6
f(x)=g(x)-h(x)=4x4+3x+1-3x2+2x+3
=4x4-3x2+5x+4
\(f\left(x\right)=4x^4+3x-1-\left(3x^2-2x-3\right)=4x^4-3x^2+5x+2\)