K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

Giải :

a, Ox là đường trung trực của AB nên OA=OB

Oy là đường trung trực của AC nên OA=OC

=> OB=OC

b, Xét tg AOB cân tại O ( do OA=OB )

=> góc O1= góc O2 = 1/2 góc AOB

Xét tg AOC cân tại o ( vì OA=OC )

=> góc O3 = góc O4 = 1/2 góc AOC

nên góc AOB+ góc AOC= 2 (góc O1+góc O3)

= 2.góc xOy

= 2.60 độ

= 120 độ

Vậy góc BOC = 120 độ

( Hình thì dễ nên bạn tự vẽ nhé )

ko chắc

Ox là đường trung trực của AM (gt) ta có OA.

Tương tự Oy là trung trực của BM: OB = OM

Gọi I là giao điểm của Ox và AM ta có ΔAIO = ΔMIO (c.c.c)

=> widehat{O_{1}} = widehat{O_{2}}.

Chứng minh tương tự ta có widehat{O_{3}} = widehat{O_{4}}, mà widehat{O_{2}} + widehat{O_{3}} = 90°

=> widehat{O_{1}} + widehat{O_{2}} + widehat{O_{3}} + widehat{O_{4}} = 180°.

Chứng tỏ ba điểm A, O, B thẳng hàng (2).

Từ (1) và (2) suy ra O là trung điểm của đoạn thẳng AB.

Đề kiểm tra 15 phút toán 7 đường trung trực

2 tháng 4 2017

. . A B // // C _ _ O x y H K

a) Gọi giao điểm của Oy và AC là H, giao điểm của Ox và AB là K

Nối O với A

Xét \(\Delta OHC\)\(\Delta OHA\)có:

\(\widehat{OHC}=\widehat{OHA}\)\(\left(=90^o\right)\)

\(OH\)là cạnh chung

\(HC=HA\)(H là trung điểm của AC)

\(\Rightarrow\Delta OHC=\Delta OHA\left(c.g.c\right)\)

\(\Rightarrow OC=OA\)(2 cạnh tương ứng)                  (1)

Xét \(\Delta OKA\)và \(\Delta OKB\)có:

\(\widehat{OKA}=\widehat{OKB}\left(90^o\right)\)

\(OK\)là cạnh chung

\(KA=KB\)(K là trung điểm của AB)

\(\Rightarrow\Delta OKA=\Delta OKB\left(c.g.c\right)\)

\(\Rightarrow OA=OB\)(2 cạnh tương ứng)                             (2)

Từ (1) và (2) \(\Rightarrow OC=OB\)

b) Vì \(\Delta OHC=\Delta OHA\)(Chứng minh trên)

\(\Rightarrow\widehat{COH}=\widehat{AOH}\)

\(\Rightarrow\)\(OH\)là tia phân giác \(\widehat{COA}\)

\(\Rightarrow\widehat{COA}=2\widehat{AOH}\)

\(\Delta OKA=\Delta OKB\)(Chứng minh trên)

\(\Rightarrow\widehat{AOK}=\widehat{BOK}\)

\(\Rightarrow OH\)là tia phân giác \(\widehat{AOB}\)

\(\Rightarrow\widehat{AOB}=2\widehat{AOK}\)

Ta có:\(\widehat{COA}+\widehat{AOB}=\widehat{BOC}\)

\(\Rightarrow2\widehat{AOH}+2\widehat{AOK}=\widehat{BOC}\)

\(\Rightarrow2\left(\widehat{AOH}+\widehat{AOK}\right)=\widehat{BOC}\)

\(\Rightarrow2.\widehat{HOK}=\widehat{BOC}\)

\(\Rightarrow2.60^o=\widehat{BOC}\)\(\left(\widehat{xOy}=\widehat{HOK}=60^o\right)\)

\(\Rightarrow\widehat{BOC}=120^o\)

26 tháng 3 2018

sai rùi

20 tháng 5 2021

a/ Ox là đường trung trực của AB

=> OA = OB ; \(\widehat{AOx}=\widehat{xOB}\)

Oy là đường trung trực của ÁC
=> OA = OC ; \(\widehat{yOA}=\widehat{yOC}\)

Do đó OB = OC
b/ \(\widehat{BOC}=\widehat{BOx}+\widehat{xOy}+\widehat{yOC}=2\widehat{xOy}=156^o\)