K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

A O B x t y 1 2 I K 1 2 3 4

xét tam giác OIA và OIB có

OA=OB

\(\widehat{O_1}=\widehat{O_2}\)

OI chung

△OIA=△OIB(c.g.c)

gọi OI giao vs AB tại K

xét △AIK và △BIK có

IA=IB(cmt từ câu a)

\(\widehat{AIK}=\widehat{BIK}\)(cmt từ câu a)

IK chung

△AIK= △BIK(c.g.c)

=>\(\widehat{K_2}=\widehat{K_3}\)(2 góc t/ứng)

mà K∈AB=>\(\widehat{K_2}=\frac{180}{2}=90^o\)

=>OI⊥AB

và AK=KB (2 cạnh t/ứng )

mà I∈Ot=>Ot là đường trung trực của AB

a) Xét ΔOIA và ΔOIB có 

OA=OB(gt)

\(\widehat{AOI}=\widehat{BOI}\)(OI là tia phân giác của \(\widehat{AOB}\))

OI chung

Do đó: ΔOIA=ΔOIB(c-g-c)

9 tháng 1 2016

đề bài thiếu rùi...Gọi A,B lần lượt là các điểm trên tia Ox & Oy sao cho OA=OB...

Như dzậy mới giải đc

7 tháng 1 2016

đề thiếu phải ko bạn :phải là gọi A,Blần lượt là cac điểm trên tia Ox ,Oy

nếu như ko có nằm trên tia Oy thì A sẽ trùng vs B 

suy ra đề sai (thiếu)

 

 

 

17 tháng 12 2021

a: Xét ΔOMA và ΔOMB có 

OM chung

\(\widehat{AOM}=\widehat{BOM}\)

OA=OB

Do đó: ΔOMA=ΔOMB

17 tháng 12 2021

lm giúp e câu b vs ạ, e đag cần câu b:(

a: Xét ΔOAH và ΔOBH có 

OA=OB

\(\widehat{AOH}=\widehat{BOH}\)

OH chung

Do đó: ΔOAH=ΔOBH

b: Xét tứ giác AOBM có 

H là trung điểm của AB

H là trung điểm của OM

Do đó: AOBM là hình bình hành

Suy ra: MB//OA

7 tháng 1 2022

a,Xét \(\Delta AOHvà\Delta BOH\)

Có: \(\widehat{AOH}=\widehat{BOH}\left(gt\right)\\ OA=OB\left(gt\right)\)

OH là cạnh chung

\(\Rightarrow\Delta OAH=\Delta OBH\left(c.g.c\right)\)

b,:v

DD
12 tháng 5 2022

a) Xét tam giác \(OIA\) và tam giác \(OIB\) có: 

\(OA=OB\)

\(\widehat{AOI}=\widehat{BOI}\)

\(OI\) cạnh chung

suy ra \(\Delta OIA=\Delta OIB\) (c.g.c) 

b) Xét tam giác \(OIN\) và tam giác \(OIM\):

\(\widehat{ION}=\widehat{IOM}\)

\(OI\) cạnh chung

\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)

suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)

\(\Rightarrow IN=IM\)

c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).

Xét tam giác \(INA\) và tam giác \(IMB\):

\(IA=IB\)

\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)

\(IN=IM\)

suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)

d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)

suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).