K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

Làm bài lớp 7 cho vui :)

a. Xét ΔOADvà ΔOCB:

Ta có: ˆO góc chung

OC=OA

CD=AB (OC=OA và OD=OB)

Vậy ΔOAD = ΔOCB (c.g.c)

Vậy ˆODA=ˆOBC (góc tương ứng)

Xét ΔABC và ΔCDA:

Ta có:

AC cạnh chung

ˆODA=ˆOBC

CD=AB (OC=OA và OD=OB)

Vậy ΔABC = ΔCDA(g.c.g)

22 tháng 11 2019

x O y y A C B D E

lưu ý:^ là dấu góc nhé

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) : góc chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

=> \(\widehat{\text{OCB}}\)=\(\widehat{ODA}\);OBCˆ=OADˆOCB^=ODA^;OBC^=OAD^ ( cặp góc tượng ứng)

Có: OADˆ+DACˆ=180 độ ;OAD^+DAC^=180 đọ

OBCˆ+CBDˆ=180độ ;OBC^+CBD^=180 độ

Mà: OBCˆ=OADˆ(cmt)OBC^=OAD^(cmt)

=> DACˆ=CBDˆDAC^=CBD^

Xét ΔEAC và ΔEBD có

ECAˆ=EDBˆ(cmt)ECA^=EDB^(cmt)

AC=BD(gt)

EACˆ=EBDˆ(cmt)EAC^=EBD^(cmt)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

OCEˆ=ODEˆ(cmt)OCE^=ODE^(cmt)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

=> EOCˆ=EODˆEOC^=EOD^

=> OE là tia pg của xOyˆxOy^

Xét ΔCOE và ΔDOE có:

OC=OD(cmt)

COEˆ=DOEˆ(cmt)COE^=DOE^(cmt)

OE: cạnh chung

=> ΔCOE=ΔDOE(c.g.c)

=> OECˆ=OEDˆ=90độ

2 tháng 1 2018

Xét tam giác OAD và tam giác OBC , có :

    Góc O chung

    OA = OB ( gt )

    OD = OC ( gt )

Suy ra tam giác OAD = tam giác OBC ( c - g - c )

2 tháng 1 2018

x O y A C B D K

a, OA = OB; AC = BD => OC = OD

Xét t/g OAD và t/g OBC có:

OA = OB (gt)

góc O chung

OC = OD (cmt)

=> t/g OAD = t/g OBD (c.g.c)

b,Vì t/g OAD = t/gOBD => góc ACK = góc BDK , góc CAK = góc DBK

Xét t/g KAC và t/g KBD có:

góc ACK = góc BDK (cmt)

AC = BD (gt)

góc CAK = góc DBK (cmt)

=> t/g KAC = t/g KBD (g.c.g)

=> AK = BK

Xét t/g OAK và t/g OBK có:

OA = OB (gt)

AK = BK (cmt)

OK chung

=> t/g OAK = t/g OBK (c.c.c)

=> góc AOK = góc BOK 

=> OK là tia p/g của góc xOy

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}\) chung

OD=OB

Do đó: ΔOAD=ΔOCB

b: ΔOAD=ΔOCB

=>\(\widehat{OAD}=\widehat{OCB};\widehat{ODA}=\widehat{OBC};AD=CB\)
Ta có: \(\widehat{IAB}+\widehat{DAO}=180^0\)(hai góc kề bù)

\(\widehat{ICD}+\widehat{OCB}=180^0\)(hai góc kề bù)

mà \(\widehat{OAD}=\widehat{OCB}\)

nên \(\widehat{IAB}=\widehat{ICD}\)

Ta có: OA+AB=OB

OC+CD=OD

mà OA=OC và OB=OD

nên AB=CD

Xét ΔIAB và ΔICD có

\(\widehat{IAB}=\widehat{ICD}\)

AB=CD

\(\widehat{IBA}=\widehat{IDC}\)

Do đó: ΔIAB=ΔICD

c: Ta có: ΔIAB=ΔICD

=>IB=ID

Xét ΔOIB và ΔOID có

OI chung

IB=ID

OB=OD

Do đó: ΔOIB=ΔOID

=>\(\widehat{BOI}=\widehat{DOI}\)

=>\(\widehat{xOI}=\widehat{yOI}\)

=>OI là phân giác của góc xOy

8 tháng 11 2019

OA = OB; AC = BD => OC = OD

Xét t/g OAD và t/g OBC có:

OA = OB (gt)

góc O chung

OC = OD (cmt)

=> t/g OAD = t/g OBD (c.g.c)

8 tháng 11 2019

ta có : oa = ob ( gt)

           ac = bd ( gt)

=> oa + ac = ob + od

hay oc = od

xét tam giác oad và tam giác obc có

góc o chung

oa = ob ( gt)

oc = od ( cmt)

=> tam giác oad = tam giác obc ( c.g.c)

a: Xét ΔCAB và ΔACD có

AB=CD

\(\widehat{CAB}=\widehat{ACD}\)

AC chung

Do đó: ΔCAB=ΔACD

b: Xét ΔABD và ΔCDB có

DB chung

AD=CB

AB=CD
Do đó; ΔABD=ΔCDB

c: Xét ΔYAB và ΔYCD có

\(\widehat{YAB}=\widehat{YCD}\)

AB=CD

\(\widehat{YBA}=\widehat{YDC}\)

Do đo:ΔYAB=ΔYCD

Suy ra: YB=YD

Xét ΔOYB và ΔOYD có

YB=YD

OB=OD

OY chung

Do đo;s ΔOYB=ΔOYD

Suy ra: \(\widehat{BOY}=\widehat{DOY}\)

hay OY là phân giác của góc xOy