Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét ΔOADvà ΔOCB:
Ta có: ˆO góc chung
OC=OA
CD=AB (OC=OA và OD=OB)
Vậy ΔOAD = ΔOCB (c.g.c)
Vậy ˆODA=ˆOBC (góc tương ứng)
Xét ΔABC và ΔCDA:
Ta có:
AC cạnh chung
ˆODA=ˆOBC
CD=AB (OC=OA và OD=OB)
Vậy ΔABC = ΔCDA(g.c.g)
x O y y A C B D E
lưu ý:^ là dấu góc nhé
a)Có: OC=OA+AC
OD=OB+BD
Mà : OA=OA(gt); AC=BD(gt)
=> OC=OD
Xét ΔOBC và ΔOAD có:
OC=OD(cmt)
\(\widehat{O}\) : góc chung
OB=OA(gt)
=> ΔOBC=ΔOAD(c.g.c)
=> BC=AD
b)Vì: ΔOBC =ΔOAD(cmt)
=> \(\widehat{\text{OCB}}\)=\(\widehat{ODA}\);OBCˆ=OADˆOCB^=ODA^;OBC^=OAD^ ( cặp góc tượng ứng)
Có: OADˆ+DACˆ=180 độ ;OAD^+DAC^=180 đọ
OBCˆ+CBDˆ=180độ ;OBC^+CBD^=180 độ
Mà: OBCˆ=OADˆ(cmt)OBC^=OAD^(cmt)
=> DACˆ=CBDˆDAC^=CBD^
Xét ΔEAC và ΔEBD có
ECAˆ=EDBˆ(cmt)ECA^=EDB^(cmt)
AC=BD(gt)
EACˆ=EBDˆ(cmt)EAC^=EBD^(cmt)
=> ΔEAC=ΔEBD(g.c.g)
c) Vì: ΔEAC=ΔEBD(cmt)
=> EC=ED
Xét ΔOEC và ΔOED có:
OC=OD(cmt)
OCEˆ=ODEˆ(cmt)OCE^=ODE^(cmt)
EC=ED(cmt)
=> ΔOEC=ΔOED(c.g.c)
=> EOCˆ=EODˆEOC^=EOD^
=> OE là tia pg của xOyˆxOy^
Xét ΔCOE và ΔDOE có:
OC=OD(cmt)
COEˆ=DOEˆ(cmt)COE^=DOE^(cmt)
OE: cạnh chung
=> ΔCOE=ΔDOE(c.g.c)
=> OECˆ=OEDˆ=90độ
Xét tam giác OAD và tam giác OBC , có :
Góc O chung
OA = OB ( gt )
OD = OC ( gt )
Suy ra tam giác OAD = tam giác OBC ( c - g - c )
x O y A C B D K
a, OA = OB; AC = BD => OC = OD
Xét t/g OAD và t/g OBC có:
OA = OB (gt)
góc O chung
OC = OD (cmt)
=> t/g OAD = t/g OBD (c.g.c)
b,Vì t/g OAD = t/gOBD => góc ACK = góc BDK , góc CAK = góc DBK
Xét t/g KAC và t/g KBD có:
góc ACK = góc BDK (cmt)
AC = BD (gt)
góc CAK = góc DBK (cmt)
=> t/g KAC = t/g KBD (g.c.g)
=> AK = BK
Xét t/g OAK và t/g OBK có:
OA = OB (gt)
AK = BK (cmt)
OK chung
=> t/g OAK = t/g OBK (c.c.c)
=> góc AOK = góc BOK
=> OK là tia p/g của góc xOy
OA = OB; AC = BD => OC = OD
Xét t/g OAD và t/g OBC có:
OA = OB (gt)
góc O chung
OC = OD (cmt)
=> t/g OAD = t/g OBD (c.g.c)
ta có : oa = ob ( gt)
ac = bd ( gt)
=> oa + ac = ob + od
hay oc = od
xét tam giác oad và tam giác obc có
góc o chung
oa = ob ( gt)
oc = od ( cmt)
=> tam giác oad = tam giác obc ( c.g.c)
a: Xét ΔCAB và ΔACD có
AB=CD
\(\widehat{CAB}=\widehat{ACD}\)
AC chung
Do đó: ΔCAB=ΔACD
b: Xét ΔABD và ΔCDB có
DB chung
AD=CB
AB=CD
Do đó; ΔABD=ΔCDB
c: Xét ΔYAB và ΔYCD có
\(\widehat{YAB}=\widehat{YCD}\)
AB=CD
\(\widehat{YBA}=\widehat{YDC}\)
Do đo:ΔYAB=ΔYCD
Suy ra: YB=YD
Xét ΔOYB và ΔOYD có
YB=YD
OB=OD
OY chung
Do đo;s ΔOYB=ΔOYD
Suy ra: \(\widehat{BOY}=\widehat{DOY}\)
hay OY là phân giác của góc xOy