\(\in\) om h là trung điểm của oa qua h kẻ đường thẳng vuông g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

a, Do H thuộc đường phân giác OA => H cách đều Ox và Oy (t/c) => HB = HC

  Xét tam giác OHC và tam giác AHB có : OH = AH(gt); góc OHC = góc AHB(đ2); HC = HB(cmt)

=> tam giác OHC = tam giác AHB(c.g.c) (1)

Xét tam giác OHC và tam giác OHB có : góc COH = góc BOH(gt); OH chung; góc OHC = góc OHB(=90*)

=> tam giác OHC = tam giác OHB(g.c.g) (2)

Từ (1) và (2) => tam giác AHB = tam giác OHB

b, Do tam giác OHC = tam giác AHB(cma) => góc OCH = góc ABH => AB // OC

Mà OC thuộc Oy => AB // Oy

c, CM tam giác OHB = tam giác AHC theo trường hợp c.g.c => góc OBH = góc ACH => OB // AC

Mà OB thuộc Ox => Ox // AC

d, Dựa vào tính chất cách đều của 1 điểm thuộc đường phân giác thfi sẽ suy ra được AO là p/g góc BAC nhé !!

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0

a: Xét ΔOCH vuông tại H và ΔODH vuông tại H có 

OH chung

\(\widehat{COH}=\widehat{DOH}\)

Do đó: ΔOCH=ΔODH

b: ta có: ΔOCD cân tại O

mà OH là đường cao

nên OH là đường trung trực