Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A .
Vì OA // MB ( giả thuyết )
=> Góc AOM = Góc OMB ( 1 )
Vì AM = OB ( giả thuyết )
=> Góc AMO = Góc MOB ( 2 )
Từ ( 1 ) và ( 2 )
=> Góc AOM = Góc MOB ; Góc AMO = Góc BMO
Vậy hình tam giác AMO = Hình tam giác BMO ( góc - cạnh - góc )
= > AO = OB ; MA = MB ( 2 cạnh tương ứng )
b: Xét ΔOBA có
OH là đường cao
OH là đường phân giác
Do đó: ΔOBA cân tại O
=>OB=OA
Ta có: ΔOBA cân tại O
mà OH là đường cao
nên H là trung điểm của AB
Xét ΔHCA vuông tại H và ΔHOB vuông tại H có
HA=HB
\(\widehat{HAC}=\widehat{HBO}\)(hai góc so le trong, AC//OB)
Do đó: ΔHCA=ΔHOB
=>HC=HO
=>H là trung điểm của OC
Xét ΔAOC có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAOC cân tại A
=>AC=AO
x y O Z M A B H K 1 2 3 4 1 2 1 1
a) Ta có :
O1 = O2
Vì AM // Oy
=> O1 = O2 = M1 = M2 (cặp góc sole )
Xét 2 tam giác OAM và tam giác OBM , có :
O1 = O2
OM là cạnh chung => tam giác OAM = tam giác OBM (g.c.g)
M1 = M2
=> OA = OB ; MA = MB
b) Xét 2 tam giác vuông OHM và OKM có :
O1 = O2
OM chung
=> tam giác OHM = tam giác OKM (theo trường hợp Cạnh huyền góc nhọn)
=> MH = MK