K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

hông bt lm

31 tháng 12 2016

a, xét tam giác AOE và tam giác BOF có :

OA = OB (gt)
\(\widehat{A}=\widehat{B}=90^0\) 
\(\widehat{O}\)là góc chung

suy ra : tam giác AOE = tam giác BOF 
suy ra : AE = BF ( cạnh tương ứng )

12 tháng 1 2017

Hình tự vẽ nha

a)Xét tam giác AEO vuông tại A và tam giác BFO vuông tại B có :

-\(\widehat{O}\)là góc chung

-OA=OB ( GT )

=> Tam giác AEO = Tam giác BFO ( cạnh góc vuông và góc nhọn kề )

=>AE=BF ( tương ứng )

b)Vì tam giác AEO = tam giác BFO ( CM trên )

=>OF=OE ( tương ứng )

\(\widehat{ÒFB}=\widehat{OEA}\)( tương ứng )

Ta có : OB+BE=OE

OA+AF=OF

mà OF=OE ; OA=OA

=>AF=BE

Xét tam giác AFI vuông tại A  và tam giác BEI vuông tại B ta có :

BE=AF ( CM trên )

\(\widehat{ÒFB}=\widehat{OEA}\)( CM trên )

=> Tam giác AFI = tam giác BEI ( cạnh góc vuông và góc nhọn kề )

c) Vì tam giác AFI = tam giác BEI ( CM trên )

=>BI=AI ( tương ứng )

Xét tam giác AOI và tam giác BOI có

OA=OB (GT)

OI là cạnh chung

BI=AI ( CM trên )

=> tam giác AOI = tam giác BOI (c.c.c)

=>\(\widehat{AOI}=\widehat{BOI}\)( tương ứng )

=> OI là tia phân giác của \(\widehat{AOB}\)

29 tháng 8 2016

undefined

mk chụp bị thiếu 1 tẹo hình bn ak!!! hìhìhì

30 tháng 11 2023

a/ Xét ΔOAE và ΔOBF có:

+) OA = OB (GT)

+) O: góc chung.

+) ∠A = ∠B = 90o (gt)

⇒ ΔOAE = ΔOBF ( g.c.g )

⇒ AE = BF ( 2 góc tương ứng )

---

b/ Có:

+) ∠E = ∠F ( vì ΔOAE = Δ OBF ) (1)

+) ∠OAI = ∠OBI ( gt )

Mà: ∠OAI + ∠IAF = ∠OBI + ∠IBE = 180o( kề bù )

⇒ ∠IAF = ∠IBE. (2)

⇔ AF = BE. (3)

Từ (1), (2) và (3) ⇒ ΔAFI = ΔBEI ( g.c.g )

---

c/ Xét ΔAIO và ΔBIO có:

+) OA = OB ( gt )

+) I: cạnh chung.

+) AI = BI ( vì ΔAFI = ΔBEI )

⇒ ΔAIO = ΔBIO ( c.c.c )

⇒ ∠AOI = ∠BOI ( 2 cạnh tương ứng )

⇒ OI là phân giác của ∠AOB. ( đpcm )

                        ~ Chúc bn hc tốt!^^ ~

a: Xét ΔOBF vuông tại B và ΔOAE vuông tại A có 

OB=OA

\(\widehat{BOF}\) chung

Do đó: ΔOBF=ΔOAE

Suy ra: BF=AE

b: Ta có: ΔOBF=ΔOAE

nên \(\widehat{OFB}=\widehat{OEA}\)

hay \(\widehat{AFI}=\widehat{BEI}\)