Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác MOA và tam giác MOB có :
OM là cạnh chung
MOA = MOB ( vì ox là tia phân giác góc xOy )
OMA = OMB ( = 90 độ )
Nên tam giác MOA = tam giác MOB ( c - c - c )
b. Ta có tam giác MOA = tam giác MOB ( cmt )
Nên MA = MB
Do đó M là trung điểm của AB
Vì vậy OM là đường trung trực của AB
Nhớ tk mk nha !!!
Xét tam giác AMO vuông tại A và tam giác BMO vuông tại B có:
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AMO = Tam giác BMO (cạnh huyền - góc nhọn)
=> AMO = BMO (2 góc tương ứng) => MO là tia phân giác của AMB
AM = BM (2 cạnh tương ứng) => tam giác MAB cân tại A
có MO là tia phân giác của AMB (chứng minh trên)
=> MO là đường trung trực của AB
x y A O H B K C
a, Xét \(\Delta\)OKA và \(\Delta\)OKC có:
OK : cạnh chung
CK = AK (gt)
góc OKA = góc OKC = 900
=> \(\Delta\)OKA = \(\Delta\)OKC ( c - g - c)
=> OA = OC ( 2 cạnh tương ứng ) (1)
Xét \(\Delta\)OHA và \(\Delta\)OHB có:
OH : cạnh chung
AH = BH (gt)
góc OHA = góc OHB = 900
=> \(\Delta\)OHA = \(\Delta\)OHB ( c - g - c)
=> OA = OB ( 2 cạnh tương ứng ) (2)
Từ (1), (2)
=> OB = OC (dpcm)
b,
Vì \(\Delta\)OKA = \(\Delta\)OKC ( c - g - c)
=> góc COK = góc AOK = \(\dfrac{1}{2}\)góc AOC
Vì \(\Delta\)OHA = \(\Delta\)OHB ( c - g - c)
=> góc AOH = góc BOH= \(\dfrac{1}{2}\)góc AOB
Ta có:
góc AOC + góc AOB = góc BOC
=> \(\dfrac{1}{2}\)góc AOC + \(\dfrac{1}{2}\)góc AOB = \(\dfrac{1}{2}\)góc BOC
=> góc AOK + góc AOH = \(\dfrac{1}{2}\)góc BOC
=> góc xOy = \(\dfrac{1}{2}\)góc BOC
hay t = \(\dfrac{1}{2}\)góc BOC
=> góc BOC = 2t
Vậy BOC = 2t
O x y A B M N
a) Xét \(\Delta AOM\)và \(\Delta BOM\)có:
OA = OB (gt)
OM là cạnh chung
AM = BM (gt)
\(\Rightarrow\Delta AOM=\Delta BOM\left(c.c.c\right)\)
\(\Rightarrow\widehat{AOM}=\widehat{BOM}\)(2 góc tương ứng)
=> OM là tia phân giác của góc xOy
b) Xét \(\Delta AON\)và \(\Delta BON\)có:
OA = OB (gt)
ON là cạnh chung
AN = BN (gt)
\(\Rightarrow\Delta AON=\Delta BON\left(c.c.c\right)\)
\(\Rightarrow\widehat{AON}=\widehat{BON}\)(2 góc tương ứng)
=> ON là tia phân giác của góc xOy
Mà OM là tia phân giác của góc xOy (theo a)
=> tia OM và ON trùng nhau
=> 3 điểm O,N,M thẳng hàng
a. Ta thực hiện, như sau:
b. Ta có:
Từ (1),(2) suy ra:
\(OA=OB\Leftrightarrow O\)thuộc đường trung trực của AB.
c. Nhận xét về các cặp tam giác vuông có chung một cạnh và một cạnh khác bằng nhau, ta có:
\(\Delta POA=\Delta POM\Rightarrow\widehat{O_1}=\widehat{O_2};\Delta QOB=\Delta QOM\Rightarrow\widehat{O_3}=\widehat{O_4}\)
Ta có:
\(\widehat{xOy}=\widehat{O_2}+\widehat{O_3}.\)
\(\widehat{AOB}=\widehat{O_1}+\widehat{O_2}+\widehat{O_3}+\widehat{O_4}=\left(\widehat{O_1}+\widehat{O_4}\right)+\left(\widehat{O_2}+\widehat{O_3}\right)\)
\(=\left(\widehat{O_2}+\widehat{O_3}\right)+\left(\widehat{O_2}+\widehat{O_3}\right)=2\left(\widehat{O_2}+\widehat{O_3}\right)=2\widehat{xOy}=2\alpha.\)
d. Nếu \(\widehat{xOy}=90^o\)thì:
\(\widehat{AOB}=2.90^o=180^o\Leftrightarrow A,O,B\)thẳng hàng <=> O là trung điểm của AB.